期刊文献+

MOF衍生的多孔ZnO/C、Ag/ZnO/C复合材料光催化性能研究 被引量:9

Photocatalytic Properties of MOF-derived ZnO/C, Ag/ZnO/C Porous Composite Materials
下载PDF
导出
摘要 以金属有机骨架(MOF-5)为前驱体,通过高温热处理和湿化学法获得ZnO/C和Ag/ZnO/C两种光催化复合材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能谱(EDS)和紫外-可见分光漫反射(UV-Vis DRS)等方法对所得样品的晶体结构、形貌特征、组成及光谱特性进行了表征。结果显示,高温热处理保留了MOF-5的原始结构。ZnO/C比表面积为390 m^2/g,载银后比表面积仍达232 m^2/g,负载的银颗粒尺寸约30 nm。光催化降解实验表明ZnO/C和Ag/ZnO/C复合材料对亚甲基蓝(MB)都具有很高的降解效率,均优于商业TiO_2。Ag/ZnO/C的光催化性能更好,且具有较好的重复利用和稳定性。因此,适度的高温碳化和掺杂贵金属是获得优良光催化性能的根本原因。 Two photocatalytic materials, ZnO/C and Ag/ZnO/C, were synthesized by high temperature heat-treatment and wet-chemical methods using a typical metal-organic framework (MOF-5) as precursor. The samples were characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), X-ray energy dispersive spectroscope (EDS), and UV-Vis diffuse reflection spectroscope (UV-Vis DRS), respectively. After heat-treatment under nitrogen, the initial morphology of MOF-5 is mostly retained. As a result, relatively high surface area up to 390 mE/g of ZnO/C and 232 m^2/g of Ag/ZnO/C are realized. The size of Ag particles loaded on Ag/ZnO/C is about 30 nm. The photocatalytic efficiencies of both ZnO/C and Ag/ZnO/C composites on photo-degradation of methylene blue (MB) are higher than that of commercial TiO2 powder (Degussa P25). Ag/ZnO/C possesses even higher photocatalytic ability, repeat- ability and stability than does ZnO/C. The results strongly suggest that high temperature heat-treatment of the MOF properly followed by moderate silver doping is a facile way to improve the photocatalytic properties.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2015年第12期1321-1326,共6页 Journal of Inorganic Materials
基金 中央高校基本科研业务费(08143053) 西安碑林科技计划项目(JX1419) 西安工程大学研究生创新基金(CX2014022)~~
关键词 金属有机骨架 掺杂 氧化锌 改性 光催化 metal-organic framework dopping ZnO modification photocatalysis
  • 相关文献

参考文献1

二级参考文献23

  • 1朱路平,黄文娅,马丽丽,傅绍云,余颖,贾志杰.ZnO-CNTs纳米复合材料的制备及性能表征[J].物理化学学报,2006,22(10):1175-1180. 被引量:12
  • 2Law M. , Greene L. E. , Johnson J. C. , Saykally R. , Yang P. D. . Nat. Mater. [J], 2005, 4(6): 455-459.
  • 3Joo J. , Lee D. , Yoo M. , Jeon S. . Sens. Actuators B[J], 2009, 138(2): 485-490.
  • 4Guo Y. , Wang H. S. , He C. L. . Langmuir[J], 2009, 25(8): 4678-4684.
  • 5Gao T. , Wang T. H. . Appl. Phys. A[J], 2005, 80: 1451-1454.
  • 6Xue B. , Chen P. , Hong Q. , Lin J. Y. , Tan K. L. . J. Mater. Chem. [J], 2001, 11(9): 2378-2381.
  • 7Tsukasa T. , Shigeyoshi I. , Susumu K. , Hiroshi Y. . Environ. Sci. Technol. [J], 1996, 30: 1275-1281.
  • 8Cao J. , Sun J. Z. , Hong J. , Li H. Y. , Chen H. Z. , Wang M. . Adv. Mater. [J], 2004, 16(1): 81-84.
  • 9Novoselov K. S. , Geim A. K. , Morozov S. V. , Jiang D. , Zhang Y. , Dubonos S. V. , Grigorieva I. V. , Firsov A. A. . Science[J],2004, 306: 666-669.
  • 10Meyer J. C. , Geim A. K. , Katsnelson M. L. , Novoselov K. S. , Booth T. J. , Roth S. . Nature[J], 2007, 446: 60-63.

共引文献10

同被引文献86

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部