期刊文献+

Al^(3+)/Yb^(3+)/P^(5+)掺杂对石英玻璃紫外透过和紫外激发荧光的影响 被引量:2

Influence of Al^(3+)/Yb^(3+)/P^(5+)-doping on UV Transmission and Fluorescence Spectra under the UV Excitation of Silica Glasses
下载PDF
导出
摘要 采用溶胶–凝胶法结合高温真空烧结工艺制备了不同浓度的Al^(3+)/Yb^(3+)/P^(5+)掺杂石英玻璃。研究了P^(5+)和Al^(3+)的引入对Yb^(3+)掺杂石英玻璃紫外透过和紫外激发荧光光谱,以及Yb4d电子结合能的影响,并初步探索了其机理。研究结果表明,Al^(3+)/Yb^(3+)/P^(5+)掺杂石英玻璃在190~300 nm波段的吸收主要来源于O2-→Yb^(3+)的电荷迁移吸收,其谱带位置和Yb4d电子结合能随Yb^(3+)的第二配位元素(Al、Si、P)电负性增大向高能方向移动。真空烧结条件下,引入Al^(3+)会引发石英玻璃中Yb^(3+)还原为Yb2+,其典型的吸收峰位于330 nm处;然而,在Al^(3+)/Yb^(3+)共掺的基础上再引入P^(5+),且P^(5+)/Al^(3+)摩尔比大于1时,可以有效抑制Yb2+的形成。紫外光激发引起的近红外发光(976 nm)是电子从电荷迁移态弛豫到Yb^(3+)激发态向基态跃迁的结果,可见发光(525 nm)归因于Yb2+的5d→4f跃迁。本文研究结果对通过优化工艺和调整组分制备出高性能的Yb^(3+)掺杂光纤具有一定的指导意义。 Silica glasses containing different contents of Al2O3, Yb2O3 and P2O5 were fabricated by Sol-Get method combined with high temperature vacuum sintering. Changes in UV transmission, fluorescence spectra under the UV excitation, and X-ray photoelectron spectra (XPS) of Yb^4+ caused by P^5+ and Al^3+ ions co-doping in Yb^3+-doped silica glasses were comparatively investigated. The related mechanisms were discussed. Results show that the strong absorption bands in the range of 190 nm to 300 nm in Al^3+/Yb^3+/P^5+-doped silica glasses are largely due to the charge-transfer (CT) from O^2- to Yb^3+, the positions of CT-absorption bands as well as binding energy of Yb^4+ are shifted to the higher energy with increasing electro-negativity of the second coordination element (Al, Si, P) of Yb^3+ ions. In addition, introduction of Al^3+ into Yb^3+-doped silica glass leads to the reduction of Yb^3+ to Yb^2+ ions under vacuum sintering condition. The characteristic absorption of Yb^2+ ions is located at 330 nm. Nevertheless, further incorporation P^5+ into Al^3+/Yb^3+-co-doped silica glass with mole ratio of P^5+/Al^3+〉1 can effectively suppress the formation of Yb^2+. The IR luminescence (976 nm) under UV excitation originates from a relaxed CT transition,and the visible luminescence (525 nm) is ascribed to 5d→4f transition of Yb^2+. The results provide a guidance on technology optimization and composition design for fabricating high-performance Yb^3+-doped fiber.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2015年第12期1327-1333,共7页 Journal of Inorganic Materials
基金 国家自然科学基金(60937003)~~
关键词 Yb^3+掺杂石英玻璃 紫外吸收带 电荷迁移 Yb^2+ Yb^3+-doped silica glasses UV absorption bands charge-transfer Yb^2+
  • 相关文献

参考文献1

二级参考文献21

  • 1MASUDA N., KAWASHITA M, KOKUBO T. Antibacterial activity of silver-doped silica glass microspheres prepared by a Sol-Gel method. Journal of Biomedical Materials, 2007, 83B(1): 114-120.
  • 2KAWASHITA M, TODA S, KIM H M, et al. Preparation of antibacterial silver-doped silica glass microspheres. Journal of Biomedical Materials, 2003, 66A(2): 266-274.
  • 3JEONG Y, SAHU J K, PAYNE D N, et al. Multi-kilowatt single-mode ytterbium-doped large-core fiber laser. J. Opt. Soc. Korea, 2009, 13(4): 416-422.
  • 4WIRTH C, SCHMIDT O, KLINER A, et al. High-power tandem pumped fiber amplifier with an output power of 2.9 kW. Opt. Lett., 2011, 36(16): 3061-3063.
  • 5JEONG Y, SAHU J K, PAYNE D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Optics Express, 2004, 12(25): 6088-6092.
  • 6HANNA D C, PERCIVAL R M, PERRY I R, et al. An ytterbium-doped monomode fiber laser - broadly tunable operation from 1.010 μm to 1.162 μm and 3-level operation at 974nm. Journal of Modern Optics, 1990, 37(4): 517-525.
  • 7XIAO H, ZHOU P, WANG X L, et al. High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier. Laser Physics Letters, 2012, 9(10): 748-753.
  • 8TANG F Z, MCNAMARA P, BARTON G W, et al. Multiple solution- doping in optical fibre fabrication-I-Aluminium doping. J. Non-Cryst. Solids, 2008, 354(10): 927-937.
  • 9TANG F Z, MCNAMARA P, BARTON G W, et al. Multiple solution- doping in optical fibre fabrication-II-Rare-earth and aluminium co-doping. J. Non-Cryst Solids, 2008, 354(15): 1582-1590.
  • 10TANG F Z, MCNAMARA P, BARTON G W, et al. Microscale inhomogeneities in aluminum solution-doping of silica-based optical fibers. Journal of the American Ceramic Society, 2007, 90(1): 23-28.

共引文献1

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部