期刊文献+

集值信息下的粗集与知识获取 被引量:1

The rough set and knowledge discovery under set-valued information
下载PDF
导出
摘要 在复杂的决策环境中,集值信息是不可避免的。在此情况下,专家往往也能给出满意的决策。从集值信息系统中提取有用的规则,用于增强智能系统的知识库,具有实际意义。粗集是处理不确定信息的有效方法,但它通常适用于完全决策表。本文对粗集理论在集值信息下进行了初步的拓展,为从集值决策表中挖掘知识提供一定的理论基础。 Experts often have to make decisions with set-valued information under set-valued information underground and can give satisfactory solutions. Therefore, it is useful to extract meaningful rules from set-valued decision tables enhancing the quality of knowledge base of intelligent systems. As a method for dealing with indefinite information, previous rough set only concerns with complete decision tables. So the extension of rough set is necessary. In the paper, the problem is discussed, which provides theoretical foundation for mining knowledge from set-valued decision tables.
作者 李兴宽
出处 《微型机与应用》 2015年第23期14-15,共2页 Microcomputer & Its Applications
关键词 粗集 集值信息 规则 rough set set-valued information rules
  • 相关文献

参考文献2

二级参考文献7

  • 1陈建华,李定坤.线性规划在知识获取中的应用[J].软件学报,1994,5(2):37-42. 被引量:2
  • 2Ziarko W. Variable precision rough sets model[J]. Journal of Computer and System Sciences,1993,46(1):39-59
  • 3Kryszkiewicz M. Rough set approach to incomplete information systems[J] .Journal of Information Sciences,1999,113:271-292
  • 4Chan Chien_Chung. A rough set approach to attribute generation in data mining[J]. Journal of Information Sciences,1998,107:169-176
  • 5Kryszkiewicz M,Rybinski H. Incomplete aspects in rough set approach[A]. In Proceedings of JCIS'98. Research Triangle Park[C]. North Carolina: 1998.371-374
  • 6Kryszkiewicz M. Association rules in incomplete databases[A]. In Ning Zhong, Lizhu Zhou ed. Methodologies for Knowledge Discovery and Data Mining[C]. Heidelberg ,Berlin: Springer,1999.84-93
  • 7陈湘晖,朱善君,吉吟东.与特征选取和离散化集成的决策规则挖掘方法[J].系统工程理论与实践,2001,21(11):1-7. 被引量:1

共引文献11

同被引文献15

  • 1程昳,苗夺谦,冯琴荣.基于模糊粗糙集的粒度计算[J].计算机科学,2007,34(7):142-145. 被引量:4
  • 2王国胤,李德毅,姚一豫,等.云模型与粒计算[M].北京:科学出版社,2012.
  • 3王涛,李舟军,颜跃进,陈火旺.数据流挖掘分类技术综述[J].计算机研究与发展,2007,44(11):1809-1815. 被引量:41
  • 4BABCOCK B, BABU S, DATER M,et al. Models and issues in data stream systems[ C]. Proceedings of the 21st ACM SI- GACT-SIGMOD-SIGART Sympsium on Principles Database Systems, Madison, USA, 2002 : 1-6.
  • 5Jin Ruoming, AGRAWAL G. Efficient decision tree construc- tion on streaming data [ C ]. Proceedings of the ACM SIGKDD the 9th International Conference on Knowledge Discovery andData Mining, Washington, USA, 2003:571-576.
  • 6PAWLAK Z. Rough sets [ J]. International journal of Informa- tion and Computer Science, 1982,11 (5) : 341-356.
  • 7JENSEN R , Shen Qiang. Fuzzy - rough sets for descriptive dimensionality reduction [ C 1 ~ Proceedings of 11 th International Conference on Fuzzy Systems, Hawaii, 2002 : 29-34.
  • 8Yao Yiyu. Three-way decision with probabilistic rough sets[ J]. Information Sciences, 2010, 180:341-353.
  • 9徐菲菲,苗夺谦,魏莱,冯琴荣,毕玉升.基于互信息的模糊粗糙集属性约简[J].电子与信息学报,2008,30(6):1372-1375. 被引量:35
  • 10辛轶,郭躬德,陈黎飞,毕亚新.IKnnM-DHecoc:一种解决概念漂移问题的方法[J].计算机研究与发展,2011,48(4):592-601. 被引量:13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部