期刊文献+

混合分解的多目标粒子群优化算法 被引量:2

Hybrid Particle Swarm Algorithm for Multi-Objective Optimization Based on Decomposition
下载PDF
导出
摘要 针对多目标粒子群算法全局最优值的选取缺陷以及多样性保留缺陷,提出了一种基于分解和拥挤距离的多目标粒子群优化算法(Smoeadpso).算法采用切比雪夫分解机制,将邻居向量对应的子问题的中的最优解来作为某个粒子全局最优值的候选解了更有效限制粒子飞行速度以避免粒子飞行超出解空间界限,引入了新的速度限制因子维持了种群多样性.本文算法与经典的多目标进化算法在10个测试函数上的对比结果表明,Smoeadpso求得的Pareto解集与真实Pareto解集的逼近程度有明显提升并且对于3目标问题求解的均匀性也比同类粒子群算法优秀. To deal with the problems of the way for selecting the global best position and reserve the diversity, a multi-objective particle swarm optimization algorithm based on decomposition and crowding distance was proposed. We introduced the Tchebycheff decompostion mechnisam and choose the best solution which comes form the neighbour weight vectors to be this particle's global best solution. To confine the flying of the particle ,this paper introduced a new speed restriction factor. Comparing with three state-of-the-art multi-objective optimizers on ten test Problems, Smoeadpso outperforms the other algorithms as regards the coverage and approximation to the real pareto front.Meanwhile, the uniformity of the solution set to the 3 objective problems performs better than other particle algorithms.
出处 《计算机系统应用》 2015年第12期215-222,共8页 Computer Systems & Applications
关键词 切比雪夫分解 拥挤距离 粒子群优化 多目标优化 Tchebycheff decomposition crowding distance particle swarm optimization multi-objective optimization
  • 相关文献

参考文献12

  • 1Deb K. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, 2001.
  • 2Kennedy J, Eberhart R C.Particle swarm optimization. Proc. IEEE International Conference on Neural Networks. 1995.
  • 3Li X. A non-dominated sorting particle swarm optimi-zer for multiobjective optimization. Genetic and Evolutionary Computation-GECCO 2003. Springer Berlin Heidelberg, 2003: 37-48.
  • 4Coello CAC, Pulido GT, Lechuga MS. Handling multiple objectives with particle swarm optimization. IEEE Trans. on Evolutionary Computation, 2004, 8(3): 256-279.
  • 5Sierra MR, Coello CAC. Improving PSO-based multiobjective optimization using crowding, mutation and ∈-dominance Evolutionary Multi-Criterion Optimization. Springer Berlin Heidelberg, 2005:505-519.
  • 6公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289. 被引量:399
  • 7Miettinen K M.Nonlinear multiobjective optimization. Norwell: Kluwer Academic Publishers, 1999.
  • 8Zhang Q, Li H. MOEA/D: A multiobjective evolutio-nary algorithm based on decomposition. IEEE Trans. on Evolutionary Computation, 2007,11 (6):712-731.
  • 9Nebro A J, Durillo selection strategies optimizer. 2013 Computation (CEC) J J, Coello CAC. Analysis of leader in a multi-objective particle swarm IEEE Congress on Evolutionary IEEE, 2013: 3153-3160.
  • 10Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation, 2002,6(2): 182-197.

二级参考文献2

共引文献398

同被引文献18

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部