期刊文献+

L1 Graph联合转换学习模型的多观测样本分类算法

Multiple observation sets classification algorithm based on L1 Graph transfer learning unified model
下载PDF
导出
摘要 不同分布多观测样本分类问题中,训练样本和测试样本来自不同的域,针对如何利用转换学习提高不同分布多观测样本分类性能问题,提出L1-Graph联合转换学习的多观测样本分类算法。首先基于转换学习构建一种非负矩阵三因子分解框架,将其中不变信息作为源域到目标域的转换桥梁;其次,基于稀疏表示思路构造L1-Graph,自适应寻找数据近邻,保留样本及特征几何结构;最后,将两个互补目标函数联合到统一优化问题中,然后利用迭代算法解决优化问题,进而估计出测试样本类别。在USPS-Binary数字数据库、Three-Domain Object Benchmark数据库和ALOI数据库上进行对比实验,实验结果表明该方法的有效性,既提高了识别精度又保证了算法鲁棒性。 In the classification problem of multiple observation sets with different distributions,the training samples and test samples are from different domains; aiming at how to use transfer learning to improve the classification performance of multiple observation sets with different distributions,a multiple observation sets classification algorithm based on L1-Graph transfer learning is presented. First of all,a framework of non-negative matrix tri-factorization based on domain adaptive learning is constructed,in which the unchanged information is regarded as the bridge of knowledge transformation from the source domain to the target domain; The second step is to construct L1-Graph on the basis of sparse representation,adaptively search neighbor data and preserve the geometric structure of samples and features; Lastly,two complementary objective functions are integrated into a unified optimization problem,and then an iterative algorithm is adopted to solve the optimization problem,and the category of the test samples is estimated.Three comparative experiments were conducted on USPS-Binary handwritten digit dataset,three-Domain Object Benchmark dataset and ALOI dataset,the experiment results verify the effectiveness of the proposed algorithm,which improves the recognition accuracy and also ensures the robustness of the algorithm.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第11期2634-2640,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61071199)项目资助
关键词 稀疏表示 转换学习 域适应 多观测样本分类 sparseness representation transfer learning domain adaptation multiple observation sets classification
  • 相关文献

参考文献16

  • 1胡正平,王宁,赵淑欢.稀疏扩展字典学习的代价敏感单样本人脸认证[J].仪器仪表学报,2015,36(4):729-735. 被引量:5
  • 2胡正平,李静,赵淑欢.基于Borda投票加权的子模块稀疏表示鲁棒模式识别算法[J].仪器仪表学报,2013,34(10):2309-2315. 被引量:6
  • 3DAUMI~III H. Frustratingly easy domain adaptation[ C].Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, 2007: 256-263.
  • 4LI T, SINDHWANI V, DING C, et al. Knowledge trans- formation for cross-domain sentiment classification [ C ~. 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2009: 716-717.
  • 5ZHU Y, CHEN, Y Q, LU ZH Q, et al. Heterogeneous transfer learning for image classification ~ C ]. Proceedings of the 25th AAAI Conference on Artificial Intelligence and the 23rd Innovative Applications of Artificial Intelli- gence Conference, 2011: 1304-1309.
  • 6DAI W Y, XUE G R, YANG Q, et al. Co-clustering based classification for out-of-domain documents [ C ]. Proceedings of the Thirteenth ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, 2007 : 210-219.
  • 7ZHUANG F ZH, LUO P, XIONG H, et all Exploiting associations between word clusters and document classes for cross-domain text categorization[ J]. Statistical Anal- ysis and Data Mining, 2011, 4( 1 ) : 100-114.
  • 8WANG H, HUANG H, NIE F P, et al. Cross-language web page classification via dual knowledge transfer using nonnegative matrix tri-factorization [ C ]. Proceedings of the 34th International ACM SIGIR Conference on Re- search and Development in Information Retrieval, 2011: 933 -942.
  • 9LONG M SH, WANG J M, DING G G, et al. Dual transfer learning[ C]. Proceedings of the 12th SIAM In- ternational Conference on Data Mining, 2012: 540-551.
  • 10ZHUANG F ZH, LUO P, DU CH Y, et al. Triplex transfer learning: Exploiting both shared and distinct concepts for text classification [ C 1- Proceedings of the 6th ACM International Conference on Web Search and Data Mining, 2013:425-434.

二级参考文献18

  • 1ZAINAL M R M, HUSAIN H, SAMAD S A, et al. Face verification using multiple localized face features [ M ]. Advances in Visual Informatics. Springer International Publishing, 2013 : 97-103.
  • 2ZHANG P, GUO X. A cascade face recngnition system using hybrid feature extraction [ J]. Digital Signal Pro- cessing, 2012, 22(6) :987-993.
  • 3XU Y, FANG X Z, LI X L, et al. Data uncertainty in face recognition[ J]. IEEE Transactions on Cybernetics, 2014,44(10) : 1950-1961.
  • 4CHUAN X R, DAO Q D, XIAO X L, et al. Band-re- weighed gabor kernel embedding for face image represen- tation and recognition [ J ]. IEEE Transactions on Image Processing, 2014, 34 (2) :725-740.
  • 5YAO A, YU S. Robust face representation using hybrid spatial feature interdependence matrix [ J ]. IEEE Trans- actions on Image Processing, 2013, 22 ( 8 ) :3247-3259.
  • 6LU J W, TAN Y P, WANG G. Discriminative muhimanifold analysis for face recognition from a single training[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2013, 35(1):39-51.
  • 7TZIMIROPOULOS G,ZAFEIRIOUS S, PANTIC M. Sub- space learning from image gradient orientations [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) , 2012, 34(12) :2454-2466.
  • 8WRIGHT J, YANG A Y, MA Y, et al. Robust face rec- ognition via sparse representation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2) : 210-227.
  • 9WANG B, LI W F, LIAO Q M. Illumination variation dictiona B designing for single-sample face recognition via sparse representation [ C ]. Lecture Notes in Computer Science, 2013:436-445.
  • 10DENG W H, HU J N, GUO J. Extended SRC: undersam- pied face recognition via intra-class variant dictionary [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2012, 34(9): 1864-1870.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部