期刊文献+

基于预流推进的最小标号最大流算法 被引量:4

Lowest label algorithm for minimum cut / maximum flow based on preflow push
下载PDF
导出
摘要 针对原始最高标号预流推进算法中的回溯现象导致其在部分网络中执行效率低下的问题,提出了基于预流推进的最小标号算法。该算法仍以预流推进为基础,但在选取活跃节点时依据贪心原则寻找最小标号活跃节点作为调整点,同时还需构造回溯检验方法终止回溯现象以提升算法效率。在仿真实验中,该算法能够适应各类复杂网络,并在稀疏网络中具有最高标号预流推进算法5倍以上执行速度;在被应用于图像分割领域时,该算法也具有50%以上性能提升。提出的基于预流推进的最小标号最大流算法能够满足大规模网络流量分配、计算机视觉图像处理等需求。 Aiming at the problem of the low execution efficiency in the part of the network caused by the backtracking phenomena of the original highest label preflow push algorithm, the lowest label algorithm based on preflow push was proposed. Based on the preflow, the proposed algorithm chose the lowest label active node as the adjustment point in the selection of active nodes by following the greedy algorithm. The backtracking verification method was introduced to terminate the backtracking loop for enhancing the efficiency of algorithm. The proposed algorithm could meet the demands of various kinds of network graphs and was five more times faster than the classic highest label preflow push algorithm for the sparse networks in the simulation experiments. When applied into the image segmentation, the proposed method achieved more than50 percent of speed compared with the classic algorithm. The proposed lowest label algorithm for minimum cut / maximum flow based on preflow push can satisfy the large-scale network traffic distribution and the image processing of computer vision.
出处 《计算机应用》 CSCD 北大核心 2015年第12期3398-3402,3407,共6页 journal of Computer Applications
关键词 预流推进 最高标号 最小标号 回溯 随机网络 preflow push highest label lowest label backtracking random network
  • 相关文献

参考文献17

  • 1ARBELAEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation [ J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2011, 33(5) : 898 - 916.
  • 2LI C, HUANG R, DING Z, et al. A level set method for image seg- mentation in the presence of intensity in homogeneities with applica- tion to MRI [ J]. IEEE Transactions on Image Processing, 2011, 20 (7) : 2007 -2016.
  • 3FULKERSON D R, DANTZIG G B. Computation of maximal flows in networks [ J]. Naval Research Logistics Quarterly, 1955, 2(4): 277 - 283.
  • 4FORD L R, FULKERSON D R. A suggested computation for maxi- mal multi-commodity network flows [ J]. Management Science, 1958, 5(I): 97-101.
  • 5GOLDBERG A V. Recent developments in maximum flow algorithms [ C]// Proceedings of the Algorithm Theory SWAT'98, LNCS 1432. Berlin: Springer, 1998: l- 10.
  • 6EDMONDS J, KARP R M. Theoretical improvements in algorithmic efficiency for network flow problems [ J]. Journal of the Association for Computing Machinery, 1972, 19(2) : 248 -264.
  • 7KARZANOV A V. Determining the maximal flow in a network by the method of preflows [J]. Soviet Mathmnaties Doklady, 1974, 15:434-437.
  • 8CHERKASSKY B V, GOLDBERG A V. On implementing the push -- relabel method for the maximum flow problem [ J]. Algorithmica, 1997, 19(4): 390 -410.
  • 9EISENSTAT D, KLEIN P N. Linear-time algorithms for max flow and nmltiple-source shortest paths in unit-weight planar graphs [ C]//Proceedings of the 45th Annual ACM Symposium on Theory of Computing. New York: ACM, 2013:735 -744.
  • 10ITALIANO G F, NUSSBAUM Y, SANKOWSKI P, et al. Improved algorithms for min cut and max flow in undirected planar graphs [ C]// Proceedings of the 43rd Annual ACM Symposium on Theory of Computing. New York: ACM, 2011:313 -322.

二级参考文献13

  • 1DINIC E A. Algorithms for solution of a problem of maximum flow in networks with power estimation[ J]. Soviet Mathematics: Doklady, 1970, 11(8) : 1277 - 1280.
  • 2EDMONDS J, KARP R M. Theoretical improvements in algorithmic efficiency for network flow problems[ J]. Journal of the ACM, 1972, 19(2) : 248 -264.
  • 3GOLDBERG A V, RAn S. Beyond the flow decomposition barrier [J]. Journal of the ACM, 1998, 45(5): 783 -797.
  • 4BOYKOV Y, KOLMOGOROV V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9) : 1124 - 1137.
  • 5HE Z, HONG B. Dynamically tuned push-relabel algorithm for the maximum flow problem on CPU-GPU-hybrid platforms [ C ]// Pro- ceedings of the 2010 IEEE International Symposium on Parallel and Distributed Processing. Piscataway: IEEE, 2010: 1-10.
  • 6NEWMAN M E J, wArrFs D J. Renormalization group analysis of the small-world network model[ J]. Physics Letters A, 1999, 263 (4) : 341 -346.
  • 7TIAN L, WANG J, YAN C, et aL Hemisphere-and gender-related differences in small-world brain networks: a resting-state functional MRI study[ J]. Neuroimage, 2011, 54(1) : 191 - 202.
  • 8JANCKE L, LANGER N. A strong parietal hub in the small-world network of coloured-hearing synaesthetes during resting state EEG [J]. Journal of Neuropsychology, 2011, 5(2): 178-202.
  • 9BARABASI A L, ALBERT R. Emergence of scaling in random networks[ J]. Science, 1999, 286(5439) : 509 - 512.
  • 10CASTELLANO C, PASTOR-SATORRAS R. Routes to thermody- namic limit on scale-free networks[ J]. Physical Review Letters, 2008, 100(14) : 148701.

共引文献15

同被引文献26

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部