期刊文献+

基于潜在特征的重叠社团识别算法

Overlapping community discovering algorithm based on latent features
下载PDF
导出
摘要 针对标签空间的指数增长这一问题,提出了一种基于潜在特征的重叠社团识别算法。首先,提出了一种包含重叠社团的网络产生式模型。根据该产生式模型,通过最大化目标网络的产生概率来推导网络中节点的潜在特征,并给出了优化目标函数。然后,通过将网络诱导为二部图,分析得出了潜在特征个数的下届,并据此对标签空间进行优化。实验表明,提出的重叠社团识别算法与Big Clam算法相比较,在保持运行效率和查准率基本不变的前提下,可以明显提高检索结果的召回率。该算法可以有效地应对社团识别中标签空间的指数增长。 In order to solve the problem of exponential increase of label space, an overlapping community discovery algorithm based on latent feature was proposed. Firstly, a generative model for network including overlapping communities was proposed. And based on the proposed generative model, an optimal object function was presented by maximizing the generative probability of the whole network, which was used to infer the latent features for each node in the network. Next, the network was induced into a bipartite graph, and the lower bound of feature number was analyzed, which was used to optimize the object function. The experiments show that, the proposed overlapping community discovering algorithm can improve the recall greatly while keeping the precision and execution efficiency unchanged, which indicates that the proposed algorithm is effective with the exponential increase of label space.
出处 《计算机应用》 CSCD 北大核心 2015年第12期3477-3480,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61170306) 湖北省自然科学基金面上项目(2014CFB536) 湖北省国际交流与合作项目(2012IHA0140) 湖北省科技重大支撑项目(2014BAA089) 湖北大学校自然科学基金资助项目(530-095183) 甘肃民族师范学院院长基金资助项目(11-16)
关键词 社会网络 重叠社团 机器学习 标注 二部图 social network overlapping community machine learning labelling bipartite graph
  • 相关文献

参考文献14

  • 1胡海波,王科,徐玲,汪小帆.基于复杂网络理论的在线社会网络分析[J].复杂系统与复杂性科学,2008,5(2):1-14. 被引量:84
  • 2陈可佳.社会网络分析中的机器学习技术综述[J].南京邮电大学学报(自然科学版),2011,31(3):83-89. 被引量:8
  • 3骆志刚,丁凡,蒋晓舟,石金龙.复杂网络社团发现算法研究新进展[J].国防科技大学学报,2011,33(1):47-52. 被引量:76
  • 4YANG J, LESKOVEC J. Overlapping communities explain core-pe- riphery organization of networks [ J]. The Digital Age and the Future of Social Network Science and Engineering, 2014, 102(12) : 1892 - 1902.
  • 5LESKOVEC J, McAULEY J. Learning to discover social circles in ego networks [ C]// NIPS 2012: Proceedings of the 26th Annual Conference on Advances in Neural Information Processing Systems 25. Cambridge: MIT Press, 2012:548-556.
  • 6BECKER E, ROBISSON B, CHAPPLE C E, et al. Muhifunctional proteins revealed by overlapping clustering in protein interaction net- work [J]. Bioinformatics, 2012, 28(1) : 84 -90.
  • 7PALLA G, DERINYI I, FARKAS I, et al. Uncovering the overlap- ping community structure of complex networks in nature and society [J]. Nature, 2005, 435(7043): 814-818.
  • 8郑曦,孙建军.链接分析领域的作者合作网络及其分析[J].图书情报工作,2009,53(4):29-32. 被引量:17
  • 9AIROLDI E M, BLEI D M, FIENBERG S E, et al. Mixed member- ship stochastic block models [ J]. Journal of Machine Learning Re- search, 2008, 9:1981-2014.
  • 10GOPALAN P K, BLEI D M. Efficient discovery of overlapping communities in massive networks [ J]. Proceedings of the National Academy of Seiences, 2013, 110(36) : 14534 - 14539.

二级参考文献122

  • 1解(亻刍),汪小帆.复杂网络中的社团结构分析算法研究综述[J].复杂系统与复杂性科学,2005,2(3):1-12. 被引量:86
  • 2李晓辉,徐跃权.复杂网络理论的情报学应用研究[J].情报资料工作,2007,28(3):9-13. 被引量:14
  • 3宋增民.图论及其应用[M].南京:东南大学出版社,1997, 11.187.
  • 4Newman M E J. The structure and function of complex networks. [ 2008 - 03 - 12 ]. http ://arXiv. org/cond - mat/0303516.
  • 5Otte E,Rousseau R. Social network analysis: A powerful strategy, also for the information sciences. Journal of Information Science, 2002,28(6) :441 -453.
  • 6Kretschmer H. Author productivity and geodesic distance in bibliographic co -authorship networks, and visibility on the Web. Scientometrics, 2004,60 (3) : 409 - 420.
  • 7Haythornthwaite C, Wellman B. Work, friendship, and media use for information exchange in a networked organization. Journal of the American Society for hfformation Science, 1998,49 ( 12 ) : 1101 - 1114.
  • 8Web of Science. [ 2008 - 03 - 05 ]. http ://access. isiproducts.com.
  • 9Freeman L C. Centrality in social networks: Conceptual clarification. Social Networks, 1979( 1 ) : 215 -239.
  • 10Newman M E J. The structure of scientific collaboration networks. PNAS, 2001,98(2) :404 -409.

共引文献181

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部