期刊文献+

基于自适应提升的概率矩阵分解算法 被引量:2

Probabilistic matrix factorization algorithm based on Ada Boost
下载PDF
导出
摘要 针对推荐系统中概率矩阵分解模型(PMF)泛化能力(对新用户和物品的推荐性能)较差、预测准确性不高的问题,提出一种新的基于自适应提升的概率矩阵分解算法(AdaBoost PMF)。该算法首先为每个样本分配样本权重;然后根据PMF中的每一轮随机梯度下降法学习用户和物品特征向量,并计算总体预测误差均值和标准差。从全局的角度利用AdaBoost思想自适应调整样本权重,使算法更注重学习预测误差较大的样本;最后对预测误差分配样本权重,让用户和物品特征向量找到更合适的优化方向。相比传统的PMF算法,AdaBoost PMF算法能够将预测精度平均提高约2.5%。实验结果表明,该算法通过加权预测误差较大的样本,能够较好地拟合用户特征向量和物品特征向量,提高预测精度,可以有效地应用于研究个性化推荐。 Concerning the poor generalization ability( the recommended performance for new users and items) and low predictive accuracy of Probabilistic Matrix Factorization( PMF) in recommendation system, a new algorithm of Probabilistic Matrix Factorization algorithm based on Ada Boost( AdaBoostPMF) was proposed. Firstly, the initial weight for each sample was assigned. Secondly, the feature vectors of users and items were learned by each round of PMF stochastic gradient descent method and the global mean and standard deviation of the prediction error were calculated. The sample weights were adaptively adjusted by using Ada Boost from the a global perspective, which made the proposed algorithm pay more attention to training those samples with the larger prediction error than others. Finally, the sample weights were assigned to predictive error, which found the more appropriate optimum direction for feature vectors of users and items. Compared with traditional PMF algorithm,the proposed AdaBoostPMF algorithm could significantly improve the prediction precision by about 2. 5% on average. The experimental results show that, the proposed algorithm can better fit the user feature vector and the item feature vector and improve the prediction accuracy by weighting the samples with larger prediction error. The proposed algorithm can be effectively applied to the personalized recommendation.
出处 《计算机应用》 CSCD 北大核心 2015年第12期3497-3501,共5页 journal of Computer Applications
基金 教育部规划基金项目(11YJA860028) 福建省科技计划重大项目(2011H6006)
关键词 推荐系统 概率矩阵分解 自适应提升 模型融合 评分预测 recommendation system Probabilistic Matrix Factorization(PMF) Ada Boost model blending rating prediction
  • 相关文献

参考文献12

  • 1KAPOOR K, SUBBIAN K, SRIVASTAVA J, et al. Just in time rec- ommendations: modeling the dynamics of boredom in activity streams [ C]//WSDM'15: Proceedings of the 8th ACM International Confer- ence on Web Search and Data Mining. New York: ACM, 2015: 233 - 242.
  • 2GU W, DONG S, ZENG Z. Increasing recommended effectiveness with Markov chains and purchase intervals [ J]. Neural Computing and Applications, 2014, 25(5): i153 -1162.
  • 3BAUER J, NANOPOULOS A. Recommender systems based on quantitative implicit customer feedback [ J]. Decision Support Sys- tems, 2014, 68:77-88.
  • 4SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization [ C]/! Proceedings of the 2008 Annual Conference on Neural Infor- mation Processing Systems 20. Cambridge: MIT Press, 2008:1257 - 1264.
  • 5SALAKHUTDINOV R, MNIH A. Bayesian probabilistic matr/x fac- torization using Markov chain Monte Carlo [ C]// ICML'08: Pro- ceedings of the 25th International Conference on Machine Learning. New York: ACM, 2008:880 -887.
  • 6ZHOU T, SHAN H, BANE1LIEE A, et al. Kernelized probabilistic matrix factorization: exploiting graphs and side information [ C]// Proceedings of the 12th SIAM International Conference on Data Min- ing. Philadelphia: SIAM, 2012:403-414.
  • 7李鹏澎,肖如良,邓新国,林丽玉,蔡声镇.一种融合引力影响的新的矩阵分解推荐方法[J].小型微型计算机系统,2015,36(4):696-700. 被引量:5
  • 8FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting [ J]. Journal of Com- puter and System Sciences, 1997, 55(1) : 119 - 139.
  • 9FREUND Y, IYER R, SCHAPIRE R E, et al. An efficient boos- ting algorithm for combining preferences [ J]. Journal of Machine Learning Research, 2003, 4(6): 933-969.
  • 10SCHAPIRE R E, FREUND Y, BARTLETT P, et al. Boosting the margin: a new explanation for the effectiveness of voting methods [J]. The Annals of Statistics, 1998, 26(5) : 1651 - 1686.

共引文献4

同被引文献7

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部