期刊文献+

多通道核相关滤波的实时跟踪方法 被引量:7

Real-time object tracking method based on multi-channel kernel correlation filter
下载PDF
导出
摘要 现有跟踪算法大都需要构建复杂的外观模型、抽取大量训练样本来实现精确的目标跟踪,会产生庞大的计算量,不利于实时跟踪。鉴于此,提出了一种多通道核相关滤波的实时跟踪方法。首先,利用核化岭回归方法对视频帧的目标信息进行训练,学习得到滤波模板;接着,用滤波模板对待检测帧的可能区域进行相关性度量;最后,将相关度最高的位置作为跟踪结果,并通过对多通道的独立输入进行加权求和,解决多通道输入问题。与现有跟踪方法的大量对比实验表明,在不同的挑战因素下,该方法在保证跟踪精度的同时,跟踪速度也存在明显优势。该方法通过相关滤波的方式可避免抽取大量样本,并利用频域的点乘代替时域的相关运算,大大降低了计算复杂度,使跟踪速度完全满足实时场景的跟踪需求。 The most existing algorithms have to build the complex model and draw a large number of training samples to achieve accurate object tracking,which will produce large amount of calculation. The proposed problem is not conducive to real-time tracking. In order to solve the problem, a real-time tracking method based on multi-channel kernel correlation filter was presented. Firstly, the target information of video frames were trained by using the nucleation ridge regression method to get the filter template. Secondly, the filter template was utilized to carry out the correlation measure for the possible area of the frame to be detected. Finally, the most relevant location was considered as the tracking result and the independent inputs of multiple channels were weighted and then added to solve the problem of multi-channel input. A large number of comparison experiments with the existing tracking methods show that, the proposed method guarantees the tracking accuracy and its tracking speed also has obvious advantages under different challenge factors. The proposed method avoids to extract a large number of samples by the correlation filter and use the dot product of frequency domain to replace the correlation operation of time-domain, which greatly reduces the computational complexity and makes the tracking speed completely meet the tracking demand of real-time scenario.
出处 《计算机应用》 CSCD 北大核心 2015年第12期3544-3549,3554,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(61203273) 江苏省自然科学基金资助项目(BK20141004) 江苏省普通高校自然科学研究项目(11KJB510009 14KJB510019) 江苏高校优势学科Ⅱ期建设工程项目
关键词 视觉跟踪 相关滤波 核函数 实时性 visual tracking correlation filter kernel function real-time
  • 相关文献

参考文献20

  • 1DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking [ C]//CVPR 2014: Proceed- ings of the 2014 Conference on Computer Vision and Pattern Recog- 'nition. Washington, DC: IEEE Computer Society, 2014: 1090- 1097.
  • 2HENRIQUES J F, CASEIRO R, MARTINS P. High-speed tracking with kernelized correlation filters [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3): 583 -596.
  • 3ZHANG K, ZHANG L, LIU Q, et al. Fast visual tracking via dense spatio-temporal context learning [ C]/! ECCV 2014: Proceedings of the 13th European Conference on Computer Vision, LNCS 8693. Berlin: Springer, 2014:127-141.
  • 4彭爽,彭晓明.基于高效多示例学习的目标跟踪[J].计算机应用,2015,35(2):466-469. 被引量:8
  • 5ZHONG W. Robust object tracking via sparsity-based collaborative model [ C]// CVPR 2012: Proceedings of the 2012 IEEE Confer- ence on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012:1838 - 1845.
  • 6ROSS D, LIM J, LIN R-S, et al. Incremental learning for robust vis- ual tracking [ J]. International Journal of Computer Vision, 2008, 77 (1/2/3) : 125 - 141.
  • 7孟军英,刘教民,韩明.基于联合特征的边缘粒子滤波目标跟踪算法研究[J].计算机应用研究,2015,32(6):1906-1911. 被引量:6
  • 8YANG F, LU H, YANG M. Robust super-pixel tracking [ J]. IEEE Transaction on Image Processing, 2014, 23(4) : 1639 - 1651.
  • 9BABENKO B, YANG M-H, BELONGIE S. Robust object tracking with online multiple instance learning [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619- 1632.
  • 10YANG F, LU H, YANG M. Robust visual tracking via multiple kernel boosting with affinity constraints [ J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(2) : 242 - 254.

二级参考文献27

  • 1ROSS D A, LIM J, LIN R-S, et al. Incremental learning for robust visual tracking [ J]. International Journal of Computer Vision, 2009, 77(1/2/3) : 125 - 141.
  • 2ZHANG L, ZHANG K, YANG M. Real-time compressive tracking [ C]// ECCV 2012: Proceedings of the 12th European Conference on Computer Vision, LNCS 7574. Berlin: Springer, 2012: 866- 879.
  • 3KWON J, LEE K M. Visual tracking decomposition [ C]//CVPR 2010: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010:1269-1276.
  • 4MEI X, LING H. Robust visual tracking using 11 minimization [ C]//ICCV 2009: Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009:1436 - 1443.
  • 5KALAL Z, MATAS J, MIKOLAJCZYK K. P-N learning: bootstrap- ping binary classifiers by structural constraints [ C]// CVPR 2010: Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010:49-56.
  • 6ZHOU Q-H, LU H, YANG M-H. Online multiple support instance tracking [C]// FG 2011: Proceedings of the 2011 IEEE Interna- tional Conference on on Automatic Face and Gesture Recognition. Piscataway: IEEE, 2011 : 545 - 552.
  • 7LEISTINER C, GODEC M, SAFFARI A, et al. Online multi-view forests for tracking [ C]//Proceedings of the 32nd DAGM Symposi-um on Pattern Recognition, LNCS 6376. Bedim Springer, 2010: 493 - 502.
  • 8BABENKO B, YANG M-H, BELONGIE S. Robust object tracking with online multiple instance learning [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (8) : 1619 - 1632.
  • 9NING J, SHI W, YANG S, et al. Improved appearance updating method in multiple instance learning tracking [ J]. IET Computer Vision, 2014, 8(2) : 118 - 130.
  • 10ZHANG K, SONG H. Real-time visual tracking via online weigh- ted multiple instance learning [J]. Pattern Recognition, 2013, 46 (1): 397-411.

共引文献12

同被引文献34

  • 1杨翠茹.基于纹理特征的绝缘子检测方法[J].电气技术,2010,11(7):46-48. 被引量:13
  • 2BENFOLD B, REID I. Stable multi-target tracking in real-time surveillance video [ C]// CVPR '11: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2011:3457 -3464.
  • 3COLLINS R T. Multitarget data association with higher-order motion models [ C]//CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012:1744 - 1751.
  • 4HUANG C, WU B, NEVATIA R. Robust object tracking by hierarchical association of detection responses [ C]//ECCV '08: Proceed- ings of the lOth European Conference on Computer Vision, LNCS 5303. Berlin: Springer-Verlag, 2008:788-801.
  • 5KUO C-H, HUANG C, NEVATIA R. Muhi-target tracking by on- line learned discriminative appearance models [ C]// CVPR '10: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: 1EEE Computer Society, 2010:685-692.
  • 6XIANG J, SANG N, HOU J. An online learned Hough forest model for multi-target tracking [ C]// ICIP 2014: Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway,NJ: IEEE, 2014:2398-2402.
  • 7DICLE C, CAMPS O I, SZNAIER M. The way they move: tracking multiple targets with similar appearance [ C]// ICCV '13: Proceed- ings of the 2013 IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2013:2304 - 2311.
  • 8GALL J, LEMPITSKY V. Class-specific Hough forests for object detection [ C]//CVPR 2009: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2009:1022 - 1029.
  • 9NEVATIA R. An online learned CRF model for multi-target track- ing [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012:2034 -2041.
  • 10DING T, SZNAIER M, CAMPS O. Fast track matching and event detection [ C]//CVPR '08: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2008:1-8.

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部