摘要
H-张量在科学和工程实际中具有重要应用,但在实际中要判定H-张量是比较困难的.通过构造不同的正对角阵,结合不等式的放缩技巧,给出了H-张量判定的几个新迭代准则.作为应用,给出了判定偶数阶实对称张量正定性的条件,相应的数值例子说明了结果的有效性.
H- tensors have wide applications in science and engineering, but it is difficult to determine whether a given tensor is an ,H - tensor or not in practice. Several new iterative jud- ging criteria were given for ,H - tensors through construction of different positive diagonal matri- ces and introduction of some techniques of inequalities. For application, some sufficient condi- tions of the positive definiteness for an even-order real symmetric tensor were given. Results of the numerical examples illustrate tile effectiveness of the presented criteria.
出处
《应用数学和力学》
CSCD
北大核心
2015年第12期1315-1323,共9页
Applied Mathematics and Mechanics
基金
国家自然科学基金(11361074)
贵州省科学技术基金([2015]2073)
贵州省科技厅联合基金([2015]7206)
贵州省教育厅自然科学基金([2015]420)~~
关键词
H-张量
实对称张量
正定性
不可约
H - tensor
real symmetric tensor
positive definiteness
irreducible