期刊文献+

双U形管束换热器压降和热效率模型实验 被引量:5

Model experiment on pressure drop and thermal efficiency of double U-shaped tubes heat exchanger
原文传递
导出
摘要 在低速风洞上实验研究了双U形管束换热器压降特性以及热效率,着重对比了U形管截面形状和换热器安装角的影响.结果表明:在相同的U形管管内平均速度下,椭圆管换热器的管内压降高于圆管换热器,在较高的管内平均速度下两者的差异更为明显;对于外部流动,换热器安装角增大所诱导的外部流动压降显著增加,在较小的换热器安装角下,椭圆管换热器的管外压降略大于圆管换热器,而在较大的换热器安装角下,椭圆管换热器的管外压降则显著低于圆管换热器;安装角为30°的换热器传热系数较安装角为10°时可以提高约50%,在密流比为0.4时,椭圆管换热器的热效率相对于圆管换热器约有6%的增加. Pressure drop and thermal efficiency of double U-shaped tube heat exchanger, especially the effects of tube cross-sectional shape and heat exchanger inclined angle, were experimentally investigated in a low-speed wind tunnel. The results show that the internal pressure drop for the elliptical tube heat exchanger is bigger than the circular tube heat ex- changer under the same averaged flow velocity inside the U-shaped tube. The difference be- tween two different heat exchangers is more obvious under higher flow velocity inside the U- shaped tube. For the external flow, the pressure drop is significantly increased with the in- crease of the heat exchanger's inclined angle. Under small inclined angle, the external flow pressure drop for the elliptical tube heat exchanger is somewhat higher than the circular tube heat exchanger. However, the pressure drop outside the elliptical tube heat exchanger is sig- nificantly lower than the circular tube heat exchanger under big inclined angle. The overall heat transfer coefficient of heat exchanger with 30 degree inclination is about 50% higher than that with 10 degree. Under the density flow ratio of O. 4, the thermal efficiency of ellip- tical tube heat exchanger is increased about 6% in relative to the circular tube heat exchanger.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2015年第11期2592-2599,共8页 Journal of Aerospace Power
关键词 U形管束换热器 安装角 管截面形状 压降 热效率 U-shaped tubes heat exchanger inclined angle tube cross-sectional shape pressure drop thermal efficiency
  • 相关文献

参考文献18

  • 1McDonald C F,Rodgers C.Heat-exchanged propulsion gas turbines: a candidate for future lower SFC and reduced-emission military and civil aero-engines[R].ASME GT2009- 5915,2009.
  • 2Kyprianidis K G,Gronstedt T,Ogaji S O T,et al.Assessment of future aero-engine designs with intercooled and intercooled recuperated cores[J].Journal of Engineering for Gas Turbine and Power,2011,133(1):011701.1-011701.10.
  • 3龚昊,王占学,康涌,黄红超,李刚团.间冷回热航空发动机性能计算与分析[J].航空动力学报,2014,29(6):1453-1461. 被引量:16
  • 4Wilfert G,Sieber J,Rolt A,et al.New environmental friendly aero engine core concepts[R].International Society for Air Breathing Engines,ISABE 2007-1120,2007.
  • 5曹梦源,唐海龙,陈敏.中冷回热航空涡扇发动机热力循环初步分析[J].航空动力学报,2009,24(11):2465-2470. 被引量:13
  • 6Min J K,Jeong J H,Ha M Y,et al.High temperature heat exchanger studies for applications to gas turbines[J].Heat Mass Transfer,2009,46(2):175-186.
  • 7Kim Y G,Choi B I,Kim K,et al.Performance analysis and optimal design of heat exchangers used in high temperature and high pressure system[J].International Journal of Aeronautical and Space Sciences,2010,11(1):19-25.
  • 8Fukui K,Kawakami Y,Okamoto K,et al.Compact heat exchangers for intercooled engines[R].International Society for Air Breathing Engines,ISABE 2011-1603,2011.
  • 9Missirlis D,Yakinthos K,Palikaras A,et al.Experimental and numerical investigation of the flow field through a heat exchanger for aero-engine applications[J].International Journal of Heat and Fluid Flow,2005,26(3):440-458.
  • 10Missirlis D,Yakinthos K,Storm P,et al.Modeling pressure drop of inclined flow through a heat exchanger for aero-engine applications[J].International Journal of Heat and Fluid Flow,2007,28(3):512-515.

二级参考文献18

  • 1曹梦源,唐海龙,陈敏.中冷回热航空涡扇发动机热力循环初步分析[J].航空动力学报,2009,24(11):2465-2470. 被引量:13
  • 2McDonald C F,Massardo A F,Rodgers C,et al. Recupera- ted gas turbine aeroengines:Part Ⅰ early development ac- tivities[J]. Aircraft Engineering and Aerospace Technolo- gy,2008,8(2) :139-157.
  • 3McDonald C F, Massardo A F, Rodgers C, et al. Recupera- ted gas turbine aeroengines:Part Ⅱ engine design studies following early development testing[J]. Aircraft Engineer- ing and Aerospace Technology, 2008,8(3) : 280-294.
  • 4McCarthy L S,Scott M L. The WR-21 intercooled recuper- ated gas turbine engine-operation and integration into royal navy type 45 destroyer power system[R]. ASME Paper GT-2002-30266,2002.
  • 5Wilfert G, Sieber J, Rolt A, et al. New environmental friendly aero engine core concepts [ R]. ISABE-2007- 1120,2007.
  • 6Rolt A M, Kyprianidis K G. Assessment of new aeroen- gine core concepts and technologies in the EU framework 6 NEWAC programme[ R]. Nice, France: 27th International Congress of the Aeronautical Sciences,2010.
  • 7Boggia S,Rud K. Intereooled recuperated aero engine[R]. Munchen, Germany : MTU Aero Engines, 2004.
  • 8McDonald C F, Massardo A F, Rodgers C, et al. Recupera- ted gas turbine aeroengines:Part Ⅲ engine concepts for re- duced emissions, lower fuel consumption, and noise abate- ment[J]. Aircraft Engineering and Aerospace Technology, 2008,8(4) :408-426.
  • 9Gmelin T C, Htittig G, Lehmann O. Summarized descrip- tion of aircraft efficiency potentials taking account of cur- rent engine technology and foreseeable medium-term de- velopments[R]. Berlin, Germany.. German Federal Minis- try for the Environment,Nature Conservation and Nuclear Safety, FKZ UM 0706 602/01,2008.
  • 10Dewanji D, Rao A G, Buijtenen J P. Conceptual study of future aero-engine concepts [J]. International Journal of Turbo and Jet Engines,2009,26(4) :263-276.

共引文献21

同被引文献36

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部