期刊文献+

采用SCAPS-1D对CZTS薄膜电池的优化 被引量:1

Optimization of CZTS Based Thin Film Solar Cells by SCAPS-1D
下载PDF
导出
摘要 采用SCAPS-1D软件建立了CZTS(Cu2ZnSnS4)薄膜电池模型,并对其输出特性进行了数值模拟,分别研究了CZTS吸收层厚度、载流子浓度和禁带宽度对CZTS薄膜电池的影响。结果表明较薄的CZTS吸收层即可满足对光谱吸收需要。载流子浓度NA的增加可以提高开路电压,但会造成短路电流减小,所以载流子浓度也是太阳电池设计中需要平衡的问题之一。最后采用成分分级方法,通过改变Se/(Se+S)比例来研究不同禁带宽度下的CZT(S,Se)(Cu2ZnSn(S,Se)4)电池性能。结果发现当Se/(Se+S)=0.3,即Eg=1.32eV时电池效率达到最高21.1%。 The performance of CZTS(Cu2ZnSnS4)based thin film solar cell was numerically simulated using SCAPS-1D software.The influences of parameters such as the thickness of CZTS absorber layer,the carrier density of CZTS,and the band gap of absorb layer of thin film solar cell were studied.Simulation results indicate that a relative thin absorber layer should be enough for spectral absorption,and high carrier density(NA)will increase the open circuit voltage,and also it can decrease the short circuit current of solar cells.Finally,composition grading approach was used to analyze the performance of thin film CZT(S,Se)(Cu2ZnSn(S,Se)4)solar cells with different bandgaps through adjusting the Se/(Se+S)ratio.The cells can reach its highest efficiency of 21.1% when Se/(Se+S)is 0.3.
出处 《半导体光电》 CAS 北大核心 2015年第5期693-697,共5页 Semiconductor Optoelectronics
关键词 SCAPS-1D CZTS 载流子浓度 禁带宽度 成分分级 SCAPS-1D CZTS carrier density bandgap composition grading
  • 相关文献

参考文献24

  • 1Katagiri H,Sasaguchi N,Hando S,et al. Preparationand evaluation of Cu2 ZnSnS4 thin films by sulfurizationof E-B evaporated precursors[J]. Sol. Energy Mater.Sol. Cells, 1997, 49(1): 407-414.
  • 2Bag S, Gunawan 0,Gokmen T, et al. Low band gapliquid-processed CZTSe solar cell with 10. 1 %efficiency [J ]. Energy Environ. Sci.,2012, 5(5):7060-7065.
  • 3Ji S,Shi T,Qiu X,et al. A Route to phasecontrollable Cu2 ZnSn ( Si-j; Se^ )4 Nanocrystals withtunable energy bands [J], Sci. Rep.,2013,3(39):2733.
  • 4Jimbo K,Kimuraet R. Cu2ZnSnS4-type thin film solarcells using abundant materials[J]. Thin Solid Films,2007, 515(15): 5997-5999.
  • 5Kim G Y’Kim J R. Nanoscale observation of surfacepotential and carrier transport in Cu2 ZnSn(S, Se)4 thinfilms grown by sputtering-based two-step process [J].Nano. Res. Lett. , 2014, 9(1) : 1-5.
  • 6Liu F,Li Y,Zhang K,et al. In-situ growth ofCu2 ZnSnS4 thin films by reactive magnetron co-sputtering[J]. Sol. Energy Mater. Sol. Cells, 2010,94(12): 2431-2434.
  • 7Ahmed S, Reuter K B,Gunawan O, et al. A highefficiency electrodeposited Cu2ZnSnS4 solar cell [ J].Adv. Energy Mater.,2012,2(2) ; 253-259.
  • 8Suryawanshi M P, Agawane G L,Bhosale S M, et al.CZTS based thin film solar cells: a status review[J].Mater. Sci. Technol. , 2013,28(1/2): 98-109.
  • 9Daranfed W?Aida M S,Attaf N, et al. Cu2 ZnSnS4thin films deposition by ultrasonic spray pyrolysis[J].J. Alloys Compd.,2012,542(1) : 22-27.
  • 10Ahmed S,Reuter K B,Gunawan O, et al. A highefficiency electrodeposited Cu2ZnSnS4 solar cell[J].Adv. Energy Mater.,2012,2(2) : 253-259.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部