期刊文献+

基于多群组均衡协同搜索的多目标优化发电调度 被引量:15

Multiobjective Optimal Generation Dispatch Using Equilibria-Based Multi-Group Synergistic Searching Algorithm
下载PDF
导出
摘要 针对多目标、强约束及大规模电力系统发电优化调度问题,提出一种新型多群组均衡协同搜索算法(EMGSS)。该算法基于随机学习自动机的协同进化搜索以实现合作搜索群组之间的适应度分配和策略交互。此外,EMGSS提出一种分级均衡聚类方法为系统调度员提供一系列多样化的帕累托最优均衡前沿,并引入纳什均衡来抽取最终多目标解集的最优决策解。仿真算例采用标准IEEE 30节点及118节点系统,性能对比与仿真测试验证了所提算法在解决高维多目标节能减排发电调度问题中的优越性。 This paper presents a novel equilibria-based multiple group synergistic searching (EMGSS) algorithm to cope with the highly constrained multi-objective generation dispatch (MOGD) with multiple contradictory objectives. As for the proposed algorithm, a synergistic evolutionary searching mechanism based on stochastic machine learning is developed to achieve the fitness assignment and strategic interaction among cooperative multi-groups. Furthermore, a novel equilibria-based hierarchical clustering is proposed to provide power dispatchers with a set of diversified optimum equilibria Pareto frontier (PF), and Nash equilibrium is used to extract the best decision solution from the resulting PF. The proposed EMGSS has been applied and tested over the IEEE 30-bus system and IEEE l l8-bus system. Case studies have verified and confirmed the superiority of the algorithm to solve the multiobjective optimization problems with high-dimensional and large-scale objective functions.
出处 《电工技术学报》 EI CSCD 北大核心 2015年第22期181-189,共9页 Transactions of China Electrotechnical Society
基金 国家高技术研究发展计划(863计划)(2012AA050209) 国家自然科学基金(51507056 51167001)资助项目
关键词 多目标发电调度 分级均衡聚类 协同进化优化 最优均衡解 帕累托最优 Multiobjective generation dispatch, equilibria-based hierarchical clustering, synergisticevolutionary optimization, optimum equilibria solution, Pareto optimality
  • 相关文献

参考文献15

  • 1郑晓,张静,马韬韬,朱少华,黄斌,郭创新.基于改进决策方法的电力系统多目标优化调度[J].电工技术学报,2010,25(9):151-156. 被引量:20
  • 2Das D B, Patvardhan C. New multi-objective stochastic search technique for economic load dispatch[J], lEE Proceedings Generation, Transmission & Distribution, 1998, 145(6): 747-752.
  • 3Abido M A. Multiobjective evolutionary algorithms for electric power dispatch problem[J]. IEEE Transac- tions on Evolutionary Computation, 2006, 10(3): 315-329.
  • 4Abido M A. Environmental/economic power dispatch using multi-objective evolutionary algorithms[J]. IEEE Transactions on Power Systems, 2003, 18(4): 1529- 1537.
  • 5Agrawal S, Panigrahi B K, Tiwari M K. Multiob- jective particle swarm algorithm with fuzzy clustering for electrical power dispatch[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(5): 529-541.
  • 6彭春华,孙惠娟.基于非劣排序微分进化的多目标优化发电调度[J].中国电机工程学报,2009,29(34):71-76. 被引量:44
  • 7He S, Wu Q H, Saunders J R. Group search optimizer: an optimization algorithm inspired by animal searching behavior[J]. IEEE Transactions on Evolutionary Com- putation, 2009, 13(5): 973-990.
  • 8Zhou B, Chan K W, Yu T, et al. Equilibrium-inspired multiple group search optimization with synergistic learning for multiobjective electric power dispatch[J]. IEEE Transactions on Power Systems, 2013, 28(4): 3534-3545.
  • 9Poznyak A S, Najim K. Learning automata and stochastic optimization[M]. New York: Springer- Verlag, 1997.
  • 10余涛,周斌,陈家荣.基于多步回溯Q(λ)学习的互联电网随机最优CPS控制[J].电工技术学报,2011,26(6):179-186. 被引量:13

二级参考文献36

共引文献72

同被引文献199

引证文献15

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部