期刊文献+

基于激光雷达的果园树干检测 被引量:13

Laser radar based orchard trunk detection
原文传递
导出
摘要 为探索激光雷达在农业机器人环境理解和导航中的应用,研究一种基于改进DBSCAN算法的果园树干检测算法。该算法使用自适应密度阈值和聚类半径对不同距离处数据点进行聚类和整合,以克服DBSCAN算法对全局变量值敏感的缺点。针对激光雷达可能扫到地面造成机器人误检的问题,采用机器人航位推算模型计算当前帧数据中待定类的距离,通过与前一帧数据中对应类距离的比较判定待定类的类别,进而对地面干扰类进行排除。试验结果表明:1)机器人正常行走时本算法能够排除噪声准确识别树干类点;2)存在果树分枝或地面干扰时,有少量漏检,平均误判果树数目为-0.13棵,能够区分出地面类和果树类。该研究可以应用到农业机器人果园环境理解和导航中。 Aiming at exploring the laser radar application in environment understanding and navigation of agricultural robot,an algorithm for orchard trunk detection based on improved DBSCAN algorithm is studied in this research.To overcome the defects that DBSCAN algorithm is sensitive to global variables,the algorithm adopts an adaptive density threshold and clustering radius to cluster and integrate data points at different distances.For avoiding false detection when laser radar sweep over the ground,robot dead reckoning model is used to calculate distance of unidentified class in current frame,and then compare with the distance of corresponding class in previous frame to category the unidentified class,finally to exclude the ground interference.The results show :1)The algorithm can exclude noise and identify the trunk points when robot is walking smoothly;2)There is certain extent of missed detection of trees since tree branch or ground interference.The average false detection number was-0.13,and the algorithm is able to distinguish trees out of ground objects.The study can be applied in agricultural robot environment understanding and navigation in orchard.
作者 张莹莹 周俊
出处 《中国农业大学学报》 CAS CSCD 北大核心 2015年第5期249-255,共7页 Journal of China Agricultural University
基金 农业部现代农业装备重点实验室开放课题资助项目(201302003)
关键词 农业机器人 激光雷达 树干检测 数据聚类 干扰排除 agricultural robot laser radar trunk detection data clustering interference elimination
  • 相关文献

参考文献20

  • 1于金霞,蔡自兴,邹小兵,段琢华.移动机器人导航中激光雷达测距性能研究[J].传感技术学报,2006,19(2):356-360. 被引量:13
  • 2雷王利,陈军.果园挖坑施肥机与控制系统设计[J].农机化研究,2013,35(2):105-107. 被引量:7
  • 3Xin Dong,Vuran M C,Irmak S.Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems[J].Ad Hoc Networks,2013,11(7):1975-1987.
  • 4Yu Chen,Zhu Heping,Ozkan H E.Development of a variable- rate sprayer with laser scanning sensor to synchronize spray outputs to tree structures[J].Transactions of the ASABE,2012,55(3):773-781.
  • 5Sanz R,Rosell J R,Llorens J,et al.Relationship between tree row lidar-volume and leaf area density for fruit orchards and vineyards obtained with a lidar 3D dynamic measurement system[J].Agricultural and Forest Meteorology,2013,171:153-162.
  • 6Gertsis A,Fountas D,Arpasanu I,et al.Precision agriculture applications in a high density olive grove adapted for mechanical harvesting in greece[J].Procedia Technology,2013,8:152-156.
  • 7Liang Xinlian,Litkey P,Hyyppa J,et al.Automatic plot-wise tree location mapping using single-scan terrestrial laser scanning[J],The Photogrammetric Journal of Finland,2011,22(19):37-48.
  • 8Lehtomaki M,Jaakkola A,Hyyppa J,et al.Detection of vertical pole-like objects in a road environment using vehicle-based laser scanning data[J].Remote Sensing,2010,2(3):641-664.
  • 9Rahman M Z A,Gorte B.Tree filtering for high density airborne lidar data[C]//Hill R,Rosette J,Suarez J.International Conference on Lidar Applications in Forest Assessment and Inventory.Edinburgh:Heriot-Watt University,2008:544-553.
  • 10Cheein F A,Steiner G1Paina G P,et al.Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection[J].Computers and Electronics in Agriculture,2011,78(2):195-207.

二级参考文献66

共引文献119

同被引文献231

引证文献13

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部