期刊文献+

融合粗糙集与D-S证据理论的航空装备故障诊断 被引量:27

Avionic devices fault diagnosis based on fusion method of rough set and D-S theory
下载PDF
导出
摘要 针对航空电子装备故障诊断中出现的多源诊断信息存在冲突的情况,基于粗糙集与证据理论在处理不确定问题时的优势,提出了一种融合粗糙集与证据理论的故障诊断方法.该方法利用粗糙集将信息源给出的诊断数据转化为证据理论中的mass函数,进行结果融合.同时,该方法给出边界粗糙熵的定义,并基于边界粗糙熵获得反映各信息源在诊断融合过程中重要度的动态权重参数,提出一种新的证据理论的冲突合成规则.仿真实验表明,该方法可以有效地提升诊断信息融合结果的准确性,在航空电子装备故障诊断方面有较好的实用价值. In order to solve the conflict of multi-sources information in the fault diagnosis process of avi- onics electric equipment, a method based on rough set theory and evidence theory for fault diagnosis was pro- posed. Because both rough set theory and evidence theory had advantages in dealing with uncertainty prob- lems. The method proposed converted diagnostic data to mass function which was needed in evidence theory in order to fuse results with rough set theory. Meanwhile, the method defined boundary rough entropy, got dynamic weight parameters which reflected the significance of every information source used in fusion process with the entropy and improve the rule for conflicting evidence combination. The experiment shows that the method improves the fusion results' accuracy of diagnostic information effectively and has a good practical value in process of avionics electric fault diagnosis.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第10期1902-1909,共8页 Journal of Beijing University of Aeronautics and Astronautics
基金 总装武器装备预研项目(9140A27020214JB14436)
关键词 边界粗糙熵 粗糙集 D-S证据理论 冲突证据融合 故障诊断 boundary rough set entropy rough set D-S evidence theory conflicting evidence fusion fault diagnosis
  • 相关文献

参考文献28

  • 1潘泉,王增福,梁彦,杨峰,刘准钆.信息融合理论的基本方法与进展(Ⅱ)[J].控制理论与应用,2012,29(10):1233-1244. 被引量:94
  • 2Khaleghi B,Khamis A,Karray F O,et al.Multisensor data fusion:A review of the state-of-the-art[J].Information Fusion,2013,14(1):28-44.
  • 3Pravia M A,Babko-Malaya O,Schneider M K,et al.Lessons learned in the creation of a data set for hard/soft information fusion[C]∥12th International Conference on Information Fusion.Piscataway,NJ:IEEE Press,2009:2114-2121.
  • 4Gross G A,Nagi R,Sambhoos K,et al.Towards hard+soft data fusion:Processing architecture and implementation for the joint fusion and analysis of hard and soft intelligence data[C]∥15th International Conference on Information Fusion.Piscataway,NJ:IEEE Press,2012:955-962.
  • 5Hossain M A,Atrey P K,El Saddik A.Learning multisensor confidence using a reward-and-punishment mechanism[J].IEEE Transactions on Instrumentation and Measurement,2009,58(5):1525-1534.
  • 6David R P,Sampaio-Neto R,Medina C A.A linear adaptive algorithm for data fusion in distributed detection systems[C]∥11th International Symposium on Wireless Communications Systems.Piscataway,NJ:IEEE Press,2014:370-374.
  • 7Meng Z,Shi Z.Extended rough set-based attribute reduction in inconsistent incomplete decision systems[J].Information Sciences,2012,204(10):44-69.
  • 8Lu Z,Qin Z,Zhang Y,et al.A fast feature selection approach based on rough set boundary regions[J].Pattern Recognition Letters,2014,36(1):81-88.
  • 9Zheng K,Hu J,Zhan Z,et al.An enhancement for heuristic attribute reduction algorithm in rough set[J].Expert Systems with Applications,2014,41(15):6748-6754.
  • 10Shu W,Shen H.Incremental feature selection based on rough set in dynamic incomplete data[J].Pattern Recognition,2014,47(12):3890-3906.

二级参考文献28

  • 1潘泉,于昕,程咏梅,张洪才.信息融合理论的基本方法与进展[J].自动化学报,2003,29(4):599-615. 被引量:184
  • 2杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 3彭冬亮,文成林,徐晓滨,薛安克.随机集理论及其在信息融合中的应用[J].电子与信息学报,2006,28(11):2199-2204. 被引量:24
  • 4ZHOU WenHui,LI Lin,CHEN GuoHai,YU AnXi.Optimality analysis of one-step OOSM filtering algorithms in target tracking[J].Science in China(Series F),2007,50(2):170-187. 被引量:12
  • 5Dempster A P. Upper and lower probabilities induced by a multi-valued mapping [J]. Ann Math Statist, 1967, 38:325-339.
  • 6Shafer G. A mathematical theory of evidence [M].Princeton N J: Princeton U. P. , 1976.
  • 7Yang J B, Singh M G. An evidential reasoning approach for multiple-attributed decision making with uncertainty [J]. IEEE Trans on System, Man and Cybernetics, 1994, 24(1):1-18.
  • 8Yang J, Sen P. A general multilevel evaluation process for hybrid MADM with uncertainty [J]. IEEE Trans on System, Man and Cybernetics, 1994, 24(10) :1458- 1473.
  • 9Drukopoulos E, Hsia Y T, Smets P. Transferable belief model for decision making in the evaluation based systems [J]. IEEE Trans on System, Man and Cybernetics, 1996, 26(1):698-712.
  • 10Walley P. Measure of uncertainty in expert system[J]. Artificial Intelligence, 1996, 83 (1) : 1 - 58.

共引文献347

同被引文献251

引证文献27

二级引证文献180

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部