期刊文献+

构建广义立方体感知网络安全态势 被引量:1

Constructing general cube to be aware of network security situation
下载PDF
导出
摘要 针对大多方法感知范围局限、信息来源单一、空间时间复杂性高及准确性偏差较大等问题,提出了分层感知模型与构建广义立方体感知网络安全态势的方法.将监测到的连续型态势因子数据经"3σ法则"离散化预处理后,聚合在所构建的广义立方体格中,纵向上融合成组件的安全态势,横向上对组件安全态势采用统计的方法融合成网络的安全态势,为增强网络安全性提供可靠的参照依据.利用网络实例数据对所提出的网络安全态势感知模型和算法进行验证,表明了该方法的正确性. Concerning the problems of limited current network security situation assessment scope, single information source, higher time and space complexity and larger deviation of the accuracy, a method was put forward to construct general cube, which can be aware of the network security situation. The continuous situa- tion factor data monitored can be pretreated by discretizing by "3o" rule" and aggregated in the general built cube, that fused into component security situation vertically and merged into the network security situation from component security situation using statistical methods horizontally. It can provide reliable reference to enhance network security. Finally, making full use of network data, the network security situation awareness model and algorithm proposed are verified and the experimental results show correctness of this method.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第10期1966-1974,共9页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(61073186 61073104 60903058) 中南大学博士后基金
关键词 网络安全 态势感知 网络管理 信息融合 广义立方体 network security situation awareness network manager information fusion general cube
  • 相关文献

参考文献16

  • 1Bass T.Multi-sensor data fusion for next generation distributed intrusion detection systems[C]∥Proceedings of the'99 IRIS National Symposium on Sensor and Data Fusion.Piscataway,NJ:IEEE Press,1999:24-27.
  • 2Mazur J,Kaderali L.The importance and challenges of bayesian parameter learning in systems biology[J].Model Based Parameter Estimation Contributions in Mathematical and Computational Sciences,2013,4:145-156.
  • 3黄同庆,庄毅.一种实时网络安全态势预测方法[J].小型微型计算机系统,2014,35(2):303-306. 被引量:36
  • 4Blasch E P,Plano S.JDL level 5 fusion model "user refinement" issues and applications in group tracking[C]∥Proceedings of the Signal Processing,Sensor Fusion,and Target Recognition XI,Spie.Bellingham,WA:SPIE,2002:270-279.
  • 5龚正虎,卓莹.网络态势感知研究[J].软件学报,2010,21(7):1605-1619. 被引量:103
  • 6Bradshaw J M,Carvalho M,Bunch L,et al.Sol:An agent-based framework for cyber situation awareness[J].KI-Künstliche Intelligenz,2012,26(1):127-140.
  • 7Digioia G,Foglietta C,Oliva G,et al.Aware online interdependency modeling via evidence theory[J].International Journal of Critical Infrastructures,2013,6893:74-92.
  • 8Bazan J G,Bazan-Socha S,Buregwa-Czuma S,et al.Classifiers based on data sets and domain knowledge:A rough set approach[J].Intelligent Systems Reference Library,2013,43:93-136.
  • 9Sample C,Schaffer K.An overview of anomaly detection[J].IT Professional,2013,15(1):8-11.
  • 10王宏,龚正虎.一种基于信息熵的关键流量矩阵发现算法[J].软件学报,2009,20(5):1377-1383. 被引量:3

二级参考文献50

共引文献630

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部