期刊文献+

改进的预测气体燃料贫油熄火边界的半经验公式 被引量:3

An Improved Semi-Empirical Correlation for Prediction of Lean Blowout Limits for Gas Turbine Combustors Using Gas Fuel
下载PDF
导出
摘要 为了进一步考察采用气体燃料时,火焰体积(FV)模型对贫油熄火边界预测的适用性,推导了气体燃料的FV模型。经过对7种典型的航空发动机燃烧室(即采用双径向旋流器和双轴向旋流器,分别改变一级旋流器、二级旋流器的进气面积和主燃孔的个数)进行验证实验,并与液体燃料FV模型和Lefebvre模型的预测结果进行比较。结果表明,上述三种模型虽然基本都可以用于气体燃料贫油熄火边界的预测,但各自的预测精度不同。在实验范围内,气体燃料FV模型、液体燃料FV模型、Lefebvre模型的预测精度依次为±5.6%,±6.9%,±7.1%。气体燃料FV模型在预测气体燃料的贫油熄火边界时有最好的预测精度。 In order to further investigate the applicability of Flame Volume(FV)model for predicting lean blowout limits of gas fuels,FV-model for gas fuels is deduced. To validate this model,experiments are conducted on 7 typical aircraft engine combustors(adopting dual-radial swirl-stabilized assembly and dual-axial swirl-stabilized assembly,changing flow area of primary swirler and secondary swirler and number of primary holes,respectively). The results predicted by gas fuel FV-model are compared with the results by liquid fuel FV-model and Lefebvre model. It verified that aforementioned 3 models can predict lean blowout for gas fuels,while respective predictive accuracies are slightly different. Within the limit of these experiments ,the predictive accuracies of gas fuel FV-model,liquid fuel FV-model,Lefebvre model are±5.6%,±6.9%,± 7.1%,respectively. In conclusion,gas fuel FV-model has best accuracy to predict lean blowout limits for gas fuel.
出处 《推进技术》 EI CAS CSCD 北大核心 2015年第11期1677-1685,共9页 Journal of Propulsion Technology
关键词 燃气轮机燃烧室 气体燃料 贫油熄火边界预测 气体燃料FV模型 Gas turbine combustor Gas fuels Prediction of lean blowout limits FV-model for gas fuels
  • 相关文献

参考文献27

  • 1胡斌.基于数值模拟的航发燃烧室熄火研究[D].北京:北京航空航天大学,2012.
  • 2廉筱纯,吴虎.航空发动机原理[M].西安:西北工业大学出版社,2011:1-8.
  • 3Lance L Smith, Zhongtao Dai. Advanced Combustor Concepts for Low Emissions Supersonic Propulsion [J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(5).
  • 4Gokulakrishnan P, Ramotowski M J, Gaines G, et al.A Novel Low NOx Lean, Premixed , and Prevaporized Combustion System for Liquid Fuels [ J ]. Journal of En- gineering for Gas Turbines and Power, 2008, 130(5).
  • 5Alan H Epstein. Aircraft Engines' Needs from Combus- tion Science and Engineering [J]. Combustion and Flame, 2012, 159: 1791-1792.
  • 6Longwell J P, Frost E E, Weiss M A. Flame Stability in Bluff Body Recirculation [J]. Journal of Industrial and Engineering Chemistry, 1953, 45(8): 1629-1633.
  • 7Zukowski E E, Marble F E. The Role of Wake Transi- tion in the Process of Flame Stabilization on Bluff Bodies [J]. AGARD Combustion Researches and Reviews, 1955, 167-180.
  • 8Ballal D R, Lefebvre A H. Weak Extinction Limits of Turbulent Flowing Mixtures [J]. Journal of Engineering forPower, 1979, 101: 343-348.
  • 9Ballal D R, Lefebvre A H. Weak Extinction Limits of Turbulent Heterogeneous Fuel/Air Mixtures [J]. Journal of Engineering for Power, 1980, 102: 416-421.
  • 10Lefebvre A H. Fuel Effects on Gas Turbine Combustion- Ignition, Stability, and Combustion Efficiency [J]. Jour- nal of Engineering for Gas Turbines and Power, 1985, 107(1): 24-37.

二级参考文献50

  • 1Longwell J P, Weiss M A. High Temperature Reaction Rates in Hydrocarbon Combustion[ J ]. Industrial and En- gineering Chemistry, 1955, 47 ( 8 ).
  • 2Longwell J P, Frost E E, Weiss M A. Flame Stability in Bluff Body Recirculation Zones [ J ]. Industrial and Engi- neering Chemistry, 1953,45(8) :1629-1633.
  • 3Zukowski E E, Marbel F E. The Role of Wake Transition in the Process of Flame Stabilization on Bluff bodies[ R]. AGARD Combustion Researches and Reviews, 1955.
  • 4Ballal D R, Lefebvre A H. Weak Extinction Limits of Turbulent Flowing Mixtures[ J ]. ASME Journal of Engi- neering for Power, 1979,101 ( 3 ).
  • 5Ballal D R, Lefebvre A H. Weak Extinction Limits of Turbulent Heterogeneous Fuel/Air Mixtures [ J ]. Journal of Engineering for Power, 1980,102.
  • 6Lefebvre A H. Fuel Effects on Gas Turbine Combustion - Ignition, Stability and Combustion Efficiency[ J]. Journal of Engineering for Gas Turbines and Power, 1985,107.
  • 7Jarymowycz T A, Mellor A M. Correlation of Lean Blow- off in an Annular Combustor[ J]. J. Propulsion, 1986,2 (2).
  • 8Derr W S, Mellor A M. Characteristic Time for Lean Blowoff in Turbine Combustor[ J ]. J. Propulsion, 1987,3 (4).
  • 9Mongia H C, Reynolds P S, Srinivasan. Muhidimensional Gas Turbine Combustion Modeling: Application and Limi- tations [ J]. AIAA Journal, 1986,24 ( 6 ) : 890-904.
  • 10Strurgess G J, Shouse D T. A Hybrid Model for Calculat- ing Lean Blow-Outs in Practical Combustion [ R ]. AIAA 1996-3125.

共引文献10

同被引文献15

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部