期刊文献+

Bphen掺杂Cs2CO3作为电子传输层对OLED器件性能的影响 被引量:5

Impact of Bphen doping Cs_2CO_3 as electron transport layer on the performance of OLEDs
下载PDF
导出
摘要 为改善OLED器件的载子注入平衡,本文在其结构ITO/MoO3/NPB/Alq3/Cs2CO3/Al中,分别引入高电子迁移率材料Bphen及Bphen∶Cs2CO3作为电子传输层。通过改变Bphen的厚度以及Bphen中Cs2CO3的体积掺杂浓度,研究其对器件发光亮度、电流密度和效率等性能的影响。实验结果表明,采用Bphen或者Bphen∶Cs2CO3作为电子传输层,均能提高器件的电子注入能力,改善器件的性能。相比于未引入Bphen的器件,采用25nm的Bphen作为电子传输层,改善了器件的电子注入,使器件的最大电流效率提高112%;采用体积掺杂浓度为15%,厚度为5nm的Bphen∶Cs2CO3作为电子传输层,减小了电子注入势垒,使器件的最大电流效率提高27%,并且掺杂层厚度的改变对器件的电子注入影响很小。该方法可用于OLED器件的阴极修饰,对器件性能的提升将起到一定的促进作用。 In order to improve the balance of carrier injection,a high electron mobility material Bphen and Bphen ∶ Cs2 CO3 are introduced in OLED devices respectively based on the structure of ITO/MoO3/NPB/Alq3/Cs2 CO3/Al.The experiments study the effect of Bphen and Bphen doping Cs2 CO3 on the OLED devices of luminescence brightness,current density and efficiency by changing the thick-ness of Bphen and the volume concentration of Cs2 CO3 doped in Bphen.Experimental results show that Bphen or Bphen∶Cs2 CO3 used as electron transport layer both can improve electronic injection and the performance of devices.Compared with the devices without Bphen,adding 25 nm thickness Bphen as electron transport layer can improve the device of electron injection,which increase the max-imum current efficiency by 1 12%.Adding 5 nm thickness Bphen:Cs2 CO3 (15% volume concentration doped)as electron transport layer can reduce the electron injection barrier,which increase the maxi-mum current efficiency by 27%.However,changing the doping layer thickness has little impact on the device‘s electron injection.This method can be used in cathode decorate of OLED devices and play a certain role in promoting the devices’performance.
出处 《液晶与显示》 CAS CSCD 北大核心 2015年第6期943-948,共6页 Chinese Journal of Liquid Crystals and Displays
基金 国家高技术研究发展计划(863计划)(No.2012AA011901) 科技部973计划前研专项(No.2012CB723406) 国家自然科学基金(No.21174036)~~
关键词 电子传输层 Bphen Cs2CO3 OLED electronic transport layer Bphen Cs2CO3 OLED
  • 相关文献

参考文献12

  • 1H?fle S,Do H,Mankel E,et al.Molybdenum oxide anode buffer layers for solution processed,blue phosphorescent small molecule organic light emitting diodes[J].Organic Electronics,2013,14(7):1820-1824.
  • 2QuB,Gao Z,Yang H S,et al.Calcium chloride electron injection/extraction layers in organic electronic devices[J].Applied Physics Letters,2014,104(4):043305.
  • 3席俭飞,张方辉,马颖,阎洪刚,刘丁菡,蒋谦.钙铝合金作为阴极对OLED器件性能的影响[J].液晶与显示,2010,25(3):355-359. 被引量:5
  • 4陈金鑫.黄孝文.OLED梦幻显示器--材料与器件[M].北京:人民邮电出版社,2011:74.
  • 5Wei H X,Ou Q D,Zhang Z,et al.The role of cesium fluoride as an n-type dopant on electron transport layer in organic light-emitting diodes[J].Organic Electronics,2013,14(3):839-844.
  • 6Deng Y H,Li Y Q,Ou Q D,et al.The doping effect of cesium-based compounds on carrier transport and operational stability in organic light-emitting diodes[J].Organic Electronics,2014,15(6):1215-1221.
  • 7Huh D H,Kim G W,Kim G H,et al.High hole mobility hole transport material for organic light-emitting devices[J].Synthetic Metals,2013,180:79-84.
  • 8Khan M A,Xu W,Wei F X,et al.Highly efficient organic electroluminescent diodes realized by efficientcharge balance with optimized electron and hole transport layers[J].Solid State Communications,2007,144(7/8):343-346.
  • 9Chou D W,Chen K L,Huang C J,et al.Efficient small-molecule organic solar cells incorporating a doped buffer layer[J].Thin Solid Films,2013,536:235-239.
  • 10Park J W,Lim J T,Oh J S,et al.Electron-injecting properties of Rb2CO3-doped Alq3 thin films in organic light-emitting diodes[J].Journal of Vacuum Science & Technology A,2013,31(3):031101.

二级参考文献7

共引文献5

同被引文献43

  • 1高强,尹勇明,于晶,纪永成,闻雪梅,刘士浩,谢文法.基于双极传输母体的高效有机磷光发光器件[J].发光学报,2014,35(6):717-721. 被引量:6
  • 2SERVICE R F. Organic LEDs look forward to a bright, white future [J]. Science, 2005, 310(5755) :1762-1763.
  • 3CHENG G, CHAN K T, TO W P, et al.. Color tunable organic light-emitting devices with external quantum efficiency over 20% based on strongly luminescent gold (Ⅲ) complexes having long-lived emissive excited states [ J]. Adv. Ma- ter., 2014, 26(16) :2540-2546.
  • 4UDAGAWA K, SASABE H, CAI C, et al.. Low-driving-voltage blue phosphorescent organic light-emitting devices with external quantum efficiency of 30% [J]. Adv. Mater. , 2014, 26(29) :5062-5066.
  • 5CHEN D C, ZHOU H, LI X C, et al.. Solution-processed cathode-interlayer-free deep blue organic light-emitting diodes [J]. Org. Electron., 2014, 15(6):1197-1204.
  • 6CHOI Y H, JEON Y P, CHOO D C, et al.. Enhancement of out-coupling efficiency due to an organic scattering layer in organic light-emitting devices [ J]. Org. Electron. , 2015, 22 : 197-201.
  • 7KIM G H, LAMPANDE R, KONG J H, et al.. New bipolar host materials for high performance of phosphorescent green organic light-emitting diodes [ J]. RSC Adv., 2015, 5 (40) :31282-31291.
  • 8JOU J H, SHEN S M, CHEN S H, et al.. Highly efficient orange-red phosphorescent organic light-emitting diode using 2, 7-bis (carbazo-9-yl) -9, 9-ditolyfluorene as the host [J]. Appl. Phys. Lett. , 2010, 96 ( 14 ) : 143306-1-3.
  • 9KIM S, KIM B, LEE J, et al.. Highly efficient white organic light emitting diodes using new blue fluorescence emitter[J]. J. Nanosci. Nanotechnol., 2015, 15(7):5442-5445.
  • 10WANG Q, DING J Q, MAD G, et al.. Manipulating charges and excitons within a single-host system to accomplish effi- ciency/CRI/color-stability trade-off for high-performance OWLEDs [J]. Adv. Mater. , 2009, 21 (23) :2397-2401.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部