摘要
高超声速飞行器通常结构整体柔度大、飞控系统权限大、飞行环境复杂、气动加热严重,极易导致由结构、气动、热和控制等耦合引起的气动伺服弹性稳定性问题。由于建模复杂、不确定性多及参数摄动影响,传统的稳定性分析方法不适用分析飞行器气动伺服弹性系统的鲁棒稳定性。利用线性分式变换,考虑多种参数摄动,由子系统到整个闭环系统依次建立气动伺服弹性状态空间模型,并应用结构奇异值?方法分析了系统的鲁棒稳定性。分析结论表明了该建模方法的有效性以及?方法在飞行器气动伺服弹性鲁棒稳定性分析中的应用前景。
Hypersonic flight vehicles usually has low overall structure stiffness and high authority flight control system, and must withstand complex flight environment and serve aerodynamic heating during flight. Factors above may easily induce aeroservoelastic stability problem that involves structure dynamics, unsteady aerodynamics, heat and control. Due to modeling complexity, multiple uncertainties and parametric perturbation, traditional stability analysis methods are inapplicable to analyze aeroservoelastic robust stability for flight vehicles. In this paper, Linear Fractional Transformation is used to establish aeroservoelastic state-space models of subsystems and the whole closed loop system considering multiple uncertainties, and structured singular value ?-method is used to analyze system robust stability. Modeling scheme and ?-method are proved valid and promising in aeroservoelastic robust stability analysis for flight vehicles by analytical results.
出处
《导弹与航天运载技术》
北大核心
2015年第6期1-5,共5页
Missiles and Space Vehicles
关键词
气动伺服弹性
鲁棒稳定性
参数摄动
结构奇异值
Aeroservoelasticity
Robust Stability
Parametric Perturbation
Structured Singular Value