期刊文献+

基于数据库的三维复杂外形飞行器表面热流快速计算方法

A Calculating Method of Surface Heat Flow of Three-dimensiona Complex Shape Vehicle Based on DELMIA
下载PDF
导出
摘要 高超声速复杂外形飞行器气动热环境预计是飞行器设计中的难点问题。发展一种基于数据库、使用数值与工程结合的表面热流快速计算方法,以X-33类飞行器为例,给出气动热数据库的构建方法及基于数据库的快速算法。通过算例比较,验证了方法的计算精度。该方法有效弥补了三维复杂外形飞行器气动热环境数值计算耗时长、工程算法计算精度不足的问题,能够满足高超声速飞行器再入时气动热环境实时预测和新型飞行器开发设计阶段优化设计的需求。 It is a difficult problem in hypersonic vehicle designing to predict the aerodynamic heating of the three-dimensional complex shape vehicle. A calculating method combining the engineering and numerical values has been developed in this paper. With the X-33 vehicle as the study object, an establishing method of the aeroheating database and a calculating method based on the database are provided. The fast method is verified by the comparison with CFD and engineering results. This method effectively solves the time-consuming and inaccurate problem of aerodynamic environment numerical calculation. Using this method, the requirements of real-time prediction of aeroheating during hypersonic vehicle reentry and the optimal design requirements during development phase of new aircraft design can be met.
出处 《导弹与航天运载技术》 北大核心 2015年第6期51-54,共4页 Missiles and Space Vehicles
关键词 气动热 数据库 数值仿真 快速算法 Aeroheating Database Numerical simulation Fast algorithm
  • 相关文献

参考文献8

  • 1Bose D, Brown J L. Uncertainty assessment of hypersonic aerothermodynamics prediction capability[J]. Journal of Spacecraft and Rocket, 2013, 50(1): 12-18.
  • 2Bowlesm J V, Henline W D. Development of an aerothermodynamic environments database for the integrated design of the X-33 prototype flight test vehicle[R]. AIAA 98-0870, 1998.
  • 3Ruth M J, Fuhrmann H D. Aerodynamic characteristics, database development, and flight simulation of the X-34 vehicle[J]. Journal of SpacecraR and Rocket, 2001, 38(3): 334-344.
  • 4Kontinos D A, Wright M J, Prabhu D K, Venkatapathy E. X-33 aerothermal design environment predictions Review of acreage and local computations[R]. AIAA 2000-2687, 2000.
  • 5Prabhu D K, Loomis M P. X-33 aerothermal environment simulations and aerothermodynamic design[R]. AIAA 98-0868, 1998.
  • 6康宏琳,阎超,李亭鹤,郭迪龙.高超声速再入钝头体表面热流计算[J].北京航空航天大学学报,2006,32(12):1395-1398. 被引量:18
  • 7韩东,方磊.基于流线跟踪法的气动热工程计算研究[J].航空动力学报,2009,24(1):65-69. 被引量:4
  • 8Berry S A, Horvath T J, Hollis B R, et al. X-33 hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rocket, 2001, 38(5): 646-657.

二级参考文献21

  • 1吕丽丽,张伟伟,叶正寅.高超声速再入体表面热流计算[J].应用力学学报,2006,23(2):259-262. 被引量:18
  • 2康宏琳,阎超,李亭鹤,郭迪龙.高超声速再入钝头体表面热流计算[J].北京航空航天大学学报,2006,32(12):1395-1398. 被引量:18
  • 3Hoffmann K A , Siddiqui M S , Chiang S T. Difficulties associated with the heat flux computations of high speed flows by the Navier-Stokes equations [R]. AIAA 91- 0457,1991.
  • 4Siddiqui M S, Hoffmann K A, Rutledge W H. A comparative study of the Navier Stokes solvers with emphasis on the heat transfer computations of high speed flows [R]. AIAA paper 92-0835,1992.
  • 5Miller C G. Experimental and predicted heating distributions for biconics at incidence in air at Mach 10 [R]. NASA TP 2334, 1984.
  • 6Dejamette F R, Tai T C. A method for calculating laminar and turbulent convective heat transfer over bodies at an angle of attaek[R]. NASACR 101678, 1969.
  • 7Cohen C B, Reshotko E. Similar solution for the compressible laminar boundary layer with heat transfer and pressure gradient[R]. NACA Report 1293,1956.
  • 8Zoby E V, Moss J N , Sutton K. Approximate convective heating equations for hypersonic flows[J]. Journal of Spacecraft and Rockets, 1981,18 (1) : 64-70.
  • 9中国人民解放军总装备部军事训练教材编辑工作委员会.高超声速气动热和热防护[M].北京:国防工业出版社,2003..
  • 10Peter A G.Computational fluid dynamics technology for hypersonic applications[R].AIAA-2003-2829,2003

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部