期刊文献+

基于种群熵粒子群优化算法的上升段交会弹道优化设计 被引量:4

Launch Vehicle Ascent Rendezvous Trajectory Optimum Design Based on Population Entropy Based Particle Swarm Optimization
下载PDF
导出
摘要 应用种群熵粒子群优化(Population Entropy based Particle Swarm Optimization,EPSO)算法研究运载火箭上升段交会弹道优化设计问题。以运载火箭和目标飞行器在交会时刻距离最小为目标函数,建立运载火箭上升段交会弹道优化模型,同时分别采用EPSO优化算法和传统粒子群优化算法进行求解。仿真结果表明,EPSO算法能够有效解决运载火箭上升段交会弹道优化问题,平均交会位置误差为8.33 m,较传统粒子群算法减少了149.37 m,平均搜索速度较传统算法提高了27%。EPSO算法收敛精度高,搜索速度快,更适用于解决上升段交会弹道优化这样的复杂约束优化问题。 The paper researched the optimum design of launch vehicle ascent rendezvous trajectory using population entropy based particle swarm optimization (EPSO) algorithm. Take the minimum distance of launch vehicle and target aircraft at intersection point as the objective function, an optimization model of launch vehicle ascent rendezvous trajectory is established and at the same time solved by EPSO algorithm and traditional particle swarm optimization algorithm respectively. The simulation result indicates that the EPSO algorithm can solve the optimization problem of launch vehicle ascent rendezvous trajectory effectively, the average error of rendezvous position is 8.33 m, reduced 149.37 m and the average search speed is improved 27% compared with the traditional particle swarm optimization algorithm. The EPSO algorithm is more suitable to solve complex constraint optimization problem as optimum design of launch vehicle ascent rendezvous trajectory because of its higher convergence accuracy and faster search speed.
出处 《导弹与航天运载技术》 北大核心 2015年第6期96-99,共4页 Missiles and Space Vehicles
基金 国家自然科学基金(61403399)
关键词 种群熵粒子群优化算法 飞行程序 交会弹道 优化 EPSO method Flight program Rendezvous trajectory Optimization
  • 相关文献

参考文献5

二级参考文献43

  • 1孙丕忠,夏智勋,郭振云.水平空中发射固体有翼运载火箭轨道设计与优化[J].固体火箭技术,2004,27(2):87-90. 被引量:16
  • 2王允良,唐伟,张勇,李为吉.通用航空飞行器气动布局设计优化(英文)[J].宇航学报,2006,27(4):709-713. 被引量:6
  • 3[1]Betts J T.Survey of numerical methods for trajectory optimization[J].Journal of Guidance,Control and Dynamics,1998,21(2):193-206.
  • 4[2]Ross I M,Fahroo F.A perspective on methods for trajectory optimization[C].In.AIAA/AAS Astrodynamics Specialist Conference and Exhibit.Monterey,CA,2002:1-7.
  • 5[3]Hull D G.Conversion of optimal control problems into parameter optimization problems[J].Journal of Guidance,Control and Dynamics,1997,20(1):57-60.
  • 6[4]Enright P J,Conway B A.Optimal finite-thrust spacecraft trajectories using collation and nonlinear programming[J].Journal of Guidance,Control and Dynamics,1991,10(5).
  • 7[10]Lu P.Inverse dynamics approach to trajectory optimization for an aerospace plane[J].Journal of Guidance,Control and Dynamics,1993,16(4):726-732.
  • 8[11]Bellman R E.Dynamic Programming[M].Princeton,USA:Princeton University Press,1957.
  • 9[13]Luus R.Iterative dynamic programming:from curiosity to a practical optimization procedure[J].Control and Intelligent Systems,1998,26:1-8.
  • 10[14]Bousson K.Single Gridpoint Dynamic Programming for trajectory Optimization[C].In.AIAA Atmospheric Flight Mechanics Conference and Exhibit.San Francisco,California,2005:1-8.

共引文献161

同被引文献47

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部