期刊文献+

提高电力系统潮流计算收敛性方法的比较分析 被引量:14

Comparative Analysis Among Prevailing Methods for Enhancing Convergence of Power Flow Calculation
下载PDF
导出
摘要 为提高大型电力系统潮流计算的收敛性,现阶段主要采用最优乘子法、张量法和自适应LevenbergMarquardt(LM)方法。分别对这3种方法在数值特点、稀疏实现和计算量方面进行了分析和比较。分析发现,最优乘子法计算永不发散且对牛顿法的修改和增加计算量最少,但计算结果容易陷入局部解;基于插值的张量法对重负荷系统补偿效果较好,但数值稳定性有待改进;自适应LM法能够得到潮流方程的精确最小二乘解,但迭代步的计算较为复杂。采用1个标准系统和2个实际系统进行仿真实验,仿真计算结果表明,相比其他两种方法,自适应LM法具有更好的鲁棒性和数值稳定性,但其实用化依赖于高效的稀疏实现。 In order to improve the convergence of power flow calculation in large-scale power system, currently the optimal multiplier method, tensor method and self-adaptive Levenberg-Marquardt (LM) method are widely utilized. This paper analyzes and compares these three methods in terms of numerical property, sparse implementation and equiva- lent computational efforts. Through the analysis of each method, it can be asserted that the optimal multiplier method never diverges and requires the least extra computational efforts compared to Newton method, but results are liable to be trapped into local solutions. The interpolation tensor method has good compensation effect for systems with heavy load, whereas its numerical stability needs to be boosted. The self-adaptive LM method can obtain the exact least square solution of power flow equations, although each iteration step is intricate. Simulation results from 1 standard IEEE test system and 2 practical power systems indicate that the self-adaptive LM method is much more robust and nu- merically stable than other methods, and its practical application relies on an efficient sparse implementation.
出处 《电力系统及其自动化学报》 CSCD 北大核心 2015年第11期57-63,共7页 Proceedings of the CSU-EPSA
基金 国家电网公司大电网重大专项资助项目(SGCC-MPLG018-2012)
关键词 电力系统 潮流计算 收敛性 最优乘子法 张量法 自适应LM法 power system power flow calculation convergence optimal multiplier method tensor method self-adaptive levenberg-Marquardt(LM ) method
  • 相关文献

参考文献19

  • 1Iwamoto S,Tamura Y. A load flow calculation method for ill-conditioned power systems[J]. IEEE Trans on Power Apparatus and Systems, 1981,100(4) : 1736-1743.
  • 2王宪荣,包丽明,柳焯.极坐标系准最优乘子病态潮流解法研究[J].中国电机工程学报,1994,14(1):40-45. 被引量:24
  • 3Overbye T J. Computation of a practical method to restore power flow solvability[J]. IEEE Trans on Power Systems, 1995, 10( 1 ) :280-287.
  • 4石飞,赵晋泉,王毅.计及发电机无功约束的最优乘子潮流计算方法比较[J].电力系统保护与控制,2009,37(2):6-10. 被引量:5
  • 5胡泽春,严正.带最优乘子牛顿法在交直流系统潮流计算中的应用[J].电力系统自动化,2009,33(9):26-31. 被引量:30
  • 6Salgado R S,Zeitune A F. Power flow solutions through tensor methods[J]. IET Generation, Transmission & Distri- bution, 2009,3 (5) : 413-424.
  • 7林济铿,吴鹏,袁龙,章建新,刘涛,王东涛.基于张量法的电力系统潮流计算[J].中国电机工程学报,2011,31(34):113-119. 被引量:12
  • 8Bouaricha A,Schnabel R B. Tensor methods for large sparse systems of nonlinear equations[J]. Mathematical Pr- ogramming, 1998,82(3 ) : 377-400.
  • 9Schnabel R B, Frank P D. Tensor methods for nonlinear e- quations [J]. SIAM Journal on Numerical Anal-ysis, 1984,21(5):815-843.
  • 10Lagaee P J. Power flow methods for improving convergence [C]//38th Annual Conference of IEEE Industrial Electron- ics. Montreal, Canada, 2012:1387-1392.

二级参考文献63

共引文献127

同被引文献131

引证文献14

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部