期刊文献+

侧斜变化对螺旋桨水动力及变形振动特性的影响 被引量:8

Effects of blade skew on the hydrodynamic and deformation performance of propellers
下载PDF
导出
摘要 由于艇后伴流场的不均匀性,螺旋桨运转时,周期性变化的载荷与桨叶结构的耦合作用会使桨叶发生变形。基于ANSYS Workbench平台,利用ACT_Transient FSI技术,将Fluent结果直接转换导入有限元求解器来计算螺旋桨结构响应,从而实现艇后螺旋桨瞬态单向的耦合分析。以DTMB 4381,DTMB 4382和DTMB 4383桨为研究对象,对艇后螺旋桨的水动力特性及桨叶的变形等进行数值模拟。结果表明:随着螺旋桨侧斜角的增加,脉动推力振荡明显减弱,桨叶最大变形量增加,但桨叶振动明显减弱。 During the operation of submarine propellers, the fluid mechanical pressure load on the bladescould result in a structural load on the component, which in turn causes deformation of the blade. In this pa-per, the structural response is analyzed with the finite element method, and the coupling simulation is ac-complished by using ACT_Transient FSI in ANSYS Workbench. The geometries of the propeller DTMB4381~4383 are then taken as the research objects, where the deformation characteristic and hydrodynamicperformance of these propellers are studied. The results show that the max blade displacement worsens withthe increase of skew angles, and the vibration of the blade decreases simultaneously.
出处 《中国舰船研究》 CSCD 北大核心 2015年第6期87-94,共8页 Chinese Journal of Ship Research
关键词 螺旋桨 流固耦合 脉动推力 变形特性 propeller Fluid-Structure Interaction(FSI) thrust pulsation deformation performance
  • 相关文献

参考文献12

二级参考文献68

  • 1周建钢,熊鹰.复合材料推进器[J].船海工程,2004,33(5):33-35. 被引量:6
  • 2MOURITZ A P, GELLERT E, BURCHILL P, et al. Review of advanced composite structures for naval ships and submarines [ J ]. Composite Structures, 2001,53 : 21 -41.
  • 3LING. Comparative stress-deflection analyses of a thick - shell composite propeller blade[ R]. Bethesda: David Taylor Research Center, 1991.
  • 4LING. Three-dimensional stress analyses of a fiber-reinforced composite thruster blade [ C]//Symposium on Propellers/Shafting, Society of Naval Architects and Marine Engineers. Virginia Beach: [s. n. ], 1991.
  • 5LIN H J, LIN J J. Effect of stacking sequence on the hydroelastic behavior of composite propeller blades [ C ]//Eleventh International Conference on Composite Materials, Australian Composite Structures Society. Gold Coast:[s. n. ], 1997.
  • 6LIN C C, LEE Y J. Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement [ J ]. Composite Structures, 2004,63 : 339 - 345.
  • 7LEE Y J, LIN C C. Optimized design of composite propeller[ J]. Mechanics of Advanced Materials and Structures, 2004,11 : 17 - 30.
  • 8LIN H J, LIN J J. Strength evaluation of a composite marine propeller blade [ J ]. Journal of Reinforced Plastics and Composites,2005,24: 1791 - 1807.
  • 9LIN H J, LIN J J. Nonlinear hydroelastic behavior of propellers using a finite-element method and lifting surface theory[ J]. Journal of Marine Science and Technology, 1996,1 : 114 - 124.
  • 10WATANABE T, KAWAMURA T, TAKEKOSHI Y, et al. Simulation of steady and unsteady cavitation on a marine propeller using a RANS CFD code[ C]//Fifth International Symposium on Cavitation. Osaka: [ s, n. ], 2003.

共引文献70

同被引文献59

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部