期刊文献+

基于主题模型的矩阵分解推荐算法 被引量:3

Matrix factorization recommendation based on topic model
下载PDF
导出
摘要 针对协同过滤算法存在的数据稀疏和忽视用户喜好多主题的问题,提出了基于主题模型的矩阵分解推荐算法,将标签、主题模型融合到了矩阵分解模型当中。该方法首先根据物品的标签提取物品的主题特征,用物品主题特征向量表达该物品,然后通过相似度计算方法得到每个物品的最近邻,最后用基于最近邻的正则化项来改进矩阵分解模型。在实验分析中,选择了不同的主题数进行比较,并且在潜在因子数不同的情况下,对比了该算法和潜在因子模型、正则化奇异值分解推荐算法。实验结果表明,改进算法能够降低预测评分的均方根误差,提高评分预测的准确度。 In order to solve the problems of data sparseness and neglecting the multi-themed of user preferences existed in collaborative filtering algorithm,a kind of matrix factorization recommendation algorithm based on the topic model was proposed. This method integrated label and topic model into matrix factorization model. First,tags of item were classified as topics. Then the similarity among items was calculated according to the topics of items. Last the nearest neighbors of each movie was found using particular similarity calculation method. The information of nearest neighbors was used as regularization term to improve the matrix factorization model. Different number of topics was used to compare this method with other recommendation algorithms using different latent factor numbers. The experimental result shows that the proposed method is able to reduce the root mean squared error between predicted ratings and true ones,and improve the accuracy of predicted rating.
出处 《计算机应用》 CSCD 北大核心 2015年第A02期122-124,127,共4页 journal of Computer Applications
基金 中央高校基本科研业务费资助项目(JD1413)
关键词 推荐系统 标签 主题模型 矩阵分解 正则化项 recommendation system label topic model matrix factorization regularization term
  • 相关文献

参考文献15

  • 1PARK Y, PARK S, JUNG W, et al. Reversed CF: a fast collabora- tive filtering algorithm using a k- nearest neighbor graph[ J]. Expert Systems with Applications, 2015, 42(8):4022-4028.
  • 2KRASNOSHCHOK O, LAMO Y. Extended content-boosted matrix factorization algorithm for recommender systems[ J]. Procedia Com- puter Science, 2014, 35:417-426.
  • 3MANZATO M G. gSVD + + : supporting implicit feedback on rec- ommender systems with metadata awareness[ C]// SAC 2013: Pro- ceedings of the 28th Annual ACM Symposium on Applied Compu- ting. New York: ACM, 2013:908-913.
  • 4MA H, ZHOU D, LIU C, et al. Recommender systems with social regularization[ C]//WSDM 2011 : Proceedings of the 4th ACM In- ternational Conference on Web Search and Data Mining. New York: ACM, 2011:287-296.
  • 5KIM H, KIM H J. A framework for tag-aware recommender systems [J]. Expert Systems with Applications, 2014, 41 (8): 4000- 4009.
  • 6ZHANG Z K, ZHOU T, ZHANG Y C. Tag-aware recommender sys- tems: a state-of-the-art survey[ J]. Journal of Computer Scienee and Technology, 2011, 26(5): 767-777.
  • 7BOGA.RDI-MES, ROVID A, ISHIKAWA H, et al. Tag and topic recommendation systems[ J]. Acta Polytechnica Hungarica, 2013, 10(6): 171-191.
  • 8BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[ J]. Journal of Machine Learning Research, 2003, 3:993 - 1022.
  • 9KOREN Y, BELL R, VOLINSKY C. Matrix factorization tech- niques for recommender systems[ J]. Computer, 2009, 42(8): 30 -37.
  • 10FUNK S. Netflix Update: Try this at home [ EB/OL]. [2006-12- 11 ]. http://sifler, org/- simon/journal/20061211, html.

同被引文献45

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部