期刊文献+

基于仿射内点信赖域算法的遥测数据建模预测

Modeling and predicting telemetric data based on trust-region interior reflective algorithm
下载PDF
导出
摘要 许多大型航天电子设备的遥测数据表现为不规则周期状,对其进行建模并进行长期预测可以在早期及时发现设备性能异常。研究利用仿射内点信赖域算法(TIR)解决数学模型参数有界约束,结合非线性最小二乘求解和仿射内点方法的特点,用预条件共轭梯度算法求解下降方向,和最速下降方向一起构造二维子空间,通过正交化二维子空间方法将待求解信赖域子问题降至二维,用特征值分解算法求解参数。给出了对某遥测数据建模的Fourier级数模型,先用快速傅里叶变换(FFT)分析求模型参数初始点,然后用上述算法求解出模型精确参数,数值实验结果表明了算法的快速有效性。 The telemetric data of large-scale spaceflight electronic equipments usually appears the irregular period,and the performance abnormity would be discovered early through modeling and prediction on these data. The Trust-region Interior Reflective( TIR) approach was used to solve the bound-constraint on the model parameters. Combined with the characteristics of non-linear least squares and TIR, the preconditioning matrix was computed by the Cholesky decomposition. The preconditioned conjugate gradient was used to compute one of the descend direction,which with the steepest descent direction forms the two-dimensional subspace. The Schmidt orthogonal two-dimensional subspace approach was adopted to get twodimensional trust region subprobem,which was solute by the eigenvalue decomposition approach. The Fourier model was used in the paper to model telemetric data,and the initial model parameters were calculated through the Fast Fourier Transform( FFT),then the above method was used to solve the precise parameters. The results of some numerical experiments show the validity of this trust-region algorithm.
出处 《计算机应用》 CSCD 北大核心 2015年第A02期128-130,150,共4页 journal of Computer Applications
关键词 遥测参数 预测 信赖域 共轭梯度 telemetric parameter prediction trust region conjugate gradient
  • 相关文献

参考文献10

  • 1GILL P E, MURRAY W, WRIGHT M H. Practical optimization [ M]. London: Academic Press, 1981:83 - 153.
  • 2刘兴高,胡云卿.应用最优化方法及Matlab实现[M].北京:科学出版社,2014:89-109.
  • 3COLEMAN T F, LI Y. An interior, trust region approach for nonlinear minimization subject to bounds [ J]. SIAM Journal on Optimization, 1996, 6(2): 418-445.
  • 4COLEMAN T F, LI Y. On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds [J]. Mathematical Programming, 1994, 67(2): 189-224.
  • 5COLEMAN T F, LI Y. A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables[ J]. SIAM Journal on Optimization, 1996, 6(4): 1040 -1058.
  • 6BRANCH M A, COLEMAN T F, LI Y. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems[ J]. SIAM Journal on Scientific Computing,1999, 21(1) : 1 -23.
  • 7STEIHAUG T. The conjugate gradient method and trust regions in large scale optimization[ J]. SIAM Journal on Numerical Analysis, 1983, 20(3): 626-637.
  • 8BYRD R H, SCHNABEL R B, SHULTZ G A. Approximate solution of the trust region problem by minimization over two- dimensional subspaces[ J]. Mathematical Programming, 1988, 40 (1/2/3) : 247 -263.
  • 9吴晓丽,倪勤,刘浩.新锥模型二维子空间信赖域算法[J].高等学校计算数学学报,2012,34(4):316-327. 被引量:2
  • 10XU H, SUN L. An iterated-subspace minimization methods with symmetric rank-one updating [ J]. Numerical Mathematics a Journal of Chinese Universities, 2004, 13(2) :233 -240.

二级参考文献10

  • 1Davidon W C. Conic approximation and collinear scaling for optimizers. SIAM J. Numer. Anal., 1980, 17 : 268- 281.
  • 2Ariyawansa K A. Deriving collinear scaling algorithms as extension of quasi-Newton methods and the local convergence of DFP and BFGS-related collinear scaling algorithms. Mathematical Programming, 1990, 49:23-48.
  • 3Deng N Y and Li Z F. Some global convergence properties of a conic-variable metric algorithm for minimization with inexact line searches. Optimization Methods and Software, 1995, 5: 105-122.
  • 4Lu X P, Ni Q. A quasi-Newton trust region method with a new conic model for the uncon- strained optimization. Applied Mathematics and Computation, 2008, 204: 373-384.
  • 5Ni Q. Optimality conditions for trust-region subproblems involving a conic model. SIAM Journal on Optimization, 2005, 15(3): 826-837.
  • 6Byrd R H, Schnabel R B, Shultz G A. Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Mathematical Programming, 1988, 40: 247-263.
  • 7More J J and Garbow B S, Hillstrom K E. Testing unconstrained optimization software. ACM Trans. Math. Software 1981, 7: 17- 41.
  • 8陆晓平,倪勤,刘浩.解新锥模型信赖域子问题的折线法[J].应用数学学报,2007,30(5):855-871. 被引量:23
  • 9吴海平,倪勤.一个新锥模型信赖域算法[J].高等学校计算数学学报,2008,30(1):57-67. 被引量:6
  • 10李正峰,邓乃扬.基于锥模型的一般信赖域算法收敛性分析[J].系统科学与数学,1998,18(2):247-252. 被引量:16

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部