期刊文献+

基于方向权值的立体匹配

Stereo matching using direction weight
下载PDF
导出
摘要 立体匹配是三维重建问题的重要环节,良好的稠密视差图是恢复立体三维结构的先决条件。针对区域立体匹配策略、固定的窗口大小内视差不一致与匹配信息不够丰富的问题,提出了一种新的相似性测度函数和方向权值算法。首先,通过新的相似性测度函数建立两点的匹配代价;其次,在该点邻域内依据方向权值算法聚合窗口内的匹配代价;最后,通过WTA(Winner Take All)算法计算初始视差图,并根据左右一致性约束优化得到最终的稠密视差图。该方法较传统的区域匹配算法,匹配精度得到提高,算法运行效率也得到了提升,经实际验证该算法的稳健性较好。 Stereo matching is an important part of three-dimensional( 3D) reconstruction problem and good recovery of dense disparity map is the precondition of 3D reconstruction. Based on regional matching strategy,a new similarity measure function was put forward,and the direction weight algorithm was applied to solve the problem between equal disparity and sufficient intensity variation within a fixed window size. Firstly,the matching costs between two points were constructed by the new similarity measure function. Secondly,the matching costs were aggregated in neighbourhood of the point. Finally,the initial disparity map was calculated by WTA( Winner Take All) algorithm and optimized to achieve the final dense disparity map according to the left-right consistency constraint. This method has improved the matching accuracy and algorithm efficiency in comparison with traditional area-based algorithm. Experiment results show that the proposed method has good robustness.
出处 《计算机应用》 CSCD 北大核心 2015年第A02期226-229,共4页 journal of Computer Applications
关键词 区域匹配 权值 视差 相似性测度函数 area-based matching weight disparity similarity measure function
  • 相关文献

参考文献10

  • 1唐丽,吴成柯,刘侍刚,颜尧平.基于区域增长的立体像对稠密匹配算法[J].计算机学报,2004,27(7):936-943. 被引量:27
  • 2WANG Z-F, ZHENG Z-G. A region based stereo matching algorithm using cooperative optimization[ C]//CVPR 2008: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2008:1-8.
  • 3KANADE T, OKUTOMI M. A stereo matching algorithm with an a- daptive window: theory and experiment[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16 (9) : 920 - 932.
  • 4VEKSLER O. Fast variable window for stereo correspondence using integral images[ C]// CVPR 2003: Proceedings of the 2003 IEEE Conference on Computer Vision and Pattern Recognition. Washing- ton, DC: IEEE Computer Society, 2003, 1:1-556-1-561.
  • 5YOON K J, KWEON I S. Adaptive support-weight approach for cor- respondence search[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4) : 650 -656.
  • 6刘天亮,罗立民.一种基于分割的可变权值和视差估计的立体匹配算法[J].光学学报,2009,29(4):1002-1009. 被引量:11
  • 7HARTLEY R I. Theory and practice of projective rectification[ J]. International Journal of Computer Vision, 1999, 35(2) : 115 - 127.
  • 8CANNY J. A computational approach to edge detection[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8 (6) : 679 - 698.
  • 9SCHARSTEIN D, SZELISKI R. Middlebury stereo vision page [ EB/OL]. [ 2015 - 05 - 01 ]. http://www, middlebury, edu/ stereo.
  • 10SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[ J]. Internation- al Journal of Computer Vision, 2002, 47(1/2/3) : 7 -42.

二级参考文献26

  • 1C. Lawrence Zitnick, Sing Bing Kang. Stereo for image-based rendering using image over-segmentation[J]. International Journal of Computer Vision, 2007, 75(1): 49-65
  • 2Daniel Scharstein, Richard Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1/ 2/ 3): 7-42
  • 3Andreas Klaus, Mario Sormann, Konrad Karner. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[C]. IEEE International Conference on Pattern Recognition, 2006. 15-18
  • 4Stan Birchfield, Carlo Tomasi. A pixel dissimilarity measure that is insensitive to image sampling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(4): 401-406
  • 5Heiko Hirschmüller. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 328-341
  • 6Kuk-Jin Yoon, In So Kweon. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656
  • 7Gu Zheng, Su Xianyu, Liu Yuankun et al.. Local stereo matching with adaptive support-weight, rank transform and disparity calibration[J]. Pattern Recognition Letters, 2008, 29(9): 1230-1235
  • 8Federico Tombari, Stefano Mattoccia, Luigi Di Stefano. Segmentation-based adaptive support for accurate stereo correspondence[C]. IEEE Pacific-Rim Symposium on Image and Video Technology, 2007. 427-438
  • 9Jong Dae Oh, Siwei Ma, C.-C. Jay Kuo. Stereo matching via disparity estimation and surface modeling[C]. IEEE International Conference on Computer Vision and Pattern Recognition, 2007. 1696-1703
  • 10Dorin Comaniciu, Peter Meer. Mean shift: A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部