期刊文献+

曲霉固液态发酵产壳聚糖降解酶组分及酶学特性分析

Comparative Study of Chitosan Degradation Enzymes from Aspergillus sp. in Solid-State and Liquid-State Fermentation
下载PDF
导出
摘要 以壳聚糖酶产生菌——曲霉为出发菌株进行固液态发酵,旨在比较其产物酶组分和酶学性质。结果表明固态发酵产酶组分复杂,除具有壳聚糖降解活性外,还具有多种常见水解酶酶活如蛋白酶、纤维素酶和果胶酶等;液态发酵所得酶组分较简单,不仅具有较大壳聚糖降解活性,还表现出少量蛋白酶和纤维素酶活性。固液态发酵产物酶学性质不同,最适反应温度分别为45℃和40℃,适宜温度分别为40-55℃和35-40℃,分别在40-50℃和30℃稳定性较高;最适反应p H分别为5.8和5.2,分别在p H4.6-6.4和p H4.6-5.8范围内具有较高活性,在p H4.6和p H5.2时稳定性最高。由此说明,固液态发酵产酶组分和相关酶学性质不同,在工业应用中有不同的作用表现。 Aspergillus sp. was cultured in solid and liquid fermentation condition respectively, enzyme production from which was studied. The results showed that solid-state fermentation produced more enzyme components than liquid state fermentation did. Enzyme preparation from solid state fermentation showed many kinds of hydrolytic enzyme activity like that of protease, cellulase, pectinase, amylase, lipase and hemcellulase beside to chitosan degradation activity, and enzyme preparation from liquid fermentation showed weak protease and cellulase activity beside to chitosan degradation activity. The optimal temperature for chitosan degradation of these two enzyme preparation was 45℃ and 40℃, and they showed high chitosan degradation activity at 40-55℃ and 35-40℃, respectively. Furthermore, the optimal p H of them was p H5.8 and p H5.2, and they showed high chitosan degradation activity at p H4.6-6.4 and p H4.6-5.8, respectively. These results indicated that Aspergillus sp. could produce different enzymes with different characteristics in solid and liquid state fermentation conditions. Thus solid state fermentation can be used to produce enzymes with chitosan degradation activities.
出处 《生物技术通报》 CAS CSCD 北大核心 2015年第11期207-213,共7页 Biotechnology Bulletin
关键词 曲霉 固态发酵 液态发酵 壳聚糖降解酶 Aspergillus sp. solid-state fermentation liquid-state fermentation chitosan degradation enzymes
  • 相关文献

参考文献23

  • 1Aam BB, Heggset EB, Norberg AL, et al. Production of chitooligosa- ccharides and their potential applications in medicine [ J ] . Marine Drugs, 2010, 8 ( 5 ) : 1482-1517.
  • 2张长梅,于抒含,张良栓,赵占义,董陆陆.不同分子量壳寡糖的制备及其生物活性的研究[J].哈尔滨医科大学学报,2013,47(6):486-489. 被引量:9
  • 3Ilina AV, Varlamov VP. Hydrolysis of chitosan in lactic acid [ J ] . Applied Biochemistry and Microbiology, 2004, 40 ( 3 ) : 300-303.
  • 4Yu WL, Hsiao YC, Chiang BH. Production of high degree polymerized chitooligosaccharides in a membrane reactor using purified chitosanase from Bacillus cereus [ J ] . Food Research International, 2009, 42 ( 9 ) : 1355-1361.
  • 5Takashi K, Yohei N, Mitsutoshi N, et al. Production of chitosan oligosaccharides using chitosanase immobilized on amylose-coated magnetic nanoparticles [ J ] . Process Biochemistry, 2008, 43 ( 1 ) : 62-69.
  • 6Xia WS, Liu P, Liu J. Advance in chitosan hydrolysis by non-specific cellulases [ J ]. Bioresource Technology, 2008, 99 ( 15 ) : 6751- 6762.
  • 7Lin H, Wang HY, Xue CH, et al. Preparation of chitosan oligomers by immobilized papain [ J ] . Enzyme and Microbial Technology, 2002, 31 ( 5 ) : 588-592.
  • 8Cabrera JC, Cutsem VP. Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan [ J ] . Biochemical Engineering Journal, 2005, 25 ( 2 ) : 165-172.
  • 9Kim SK, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides ( COS ) : A review [ J ] . Carbohydrate Polymers, 2005, 62 ( 4 ) : 357-368.
  • 10Fu JY, Wu SM, Chang CT, et al. Characterization of three chitosanase isozymes isolated from a commercial crude porcine pepsin preparation [ J ] . Journal of Agriculture and Food Ehemistry, 2003, 51 ( 4 ) : 1042-1048.

二级参考文献27

共引文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部