摘要
文章以确定性的边干边学模型和R&D模型为背景,将随机扰动和技术水平引入其中,得到包含劳动力投入、物质资本和技术水平的随机内生经济增长模型.因此原模型中的要素积累方程从ODE过渡到Ito^SDE,并对其作某些定性的分析.进而运用二次Liapunov函数等方法对随机边干边学模型的零解的稳定性及其平稳分布进行了有益的探索,得出了一些有意义的结果。
Stochastic disturbance and technological level are introduced into deterministic growth model of "learning by doing and R&D". The stochastic endogenous growth model with the labor input, physical capital and technological level is obtained. The accumulation equations of production factors accordingly to Ito SDE from ODE, on which qualitative analysis is built. Moreover, the method of the quadratic Liapunov function and the others are used to analyze the stability of zero solution of the stochastic model of Learning by doing and to calculate the stationary distribution of the model. Helpful results are obtained.
出处
《合肥师范学院学报》
2015年第6期11-12,16,共3页
Journal of Hefei Normal University
基金
国家级大学生创新创业训练计划项目(201511059033)
关键词
技术水平
内生增长
二次Liapunov函数
平稳分布
经济增长
Technological level
Endogenous growth
Quadratic Liapunov function
Stationary distribution
Economic growth