期刊文献+

基于压缩传感技术的埋弧焊X射线焊缝图像缺陷检测 被引量:4

A new algorithm for detecting defects of sub-arc welding xray image based on compress sensor theory
下载PDF
导出
摘要 将压缩传感理论引入X射线焊缝图像缺陷判断,提出将判断X射线焊缝图像是否含有缺陷问题作为一个模式识别问题处理,将待检测图像视为样本图像的线性组合,通过求取系数向量来判断图像是否存在缺陷.为实现系数向量的稀疏化,提出利用罚函数的方法求解0范数最小问题的近似最优解,提出新的光滑可导的0-1惩罚项函数,使求0范数最优成为可能.在此基础上分别利用1范数最小和2范数最小求取系数向量,并利用混淆矩阵对所求结果进行分析.结果表明,综合考虑0,1,2范数最小化所得系数的识别算法灵敏度可达99%,特异度可达98%. An efficient X-ray radiography image analysis algorithm is developed for submerged-arc welding defects detection. The compress sensor theory is incorporated into the new algorithm,and the problem of defect detection is changed to a model recognition problem. The given X-ray image is represented by a linear combination of few model X-ray images. If a dictionary of model defect images and noise images are obtained,the coefficient vector can give important information for deciding the given image is defect or noise. Thus a sparse vector representation is sought by performing l0,l1 and l2 norm minimization. Finally,the sparse representations of the defect part and noisy part are compared in the context of a maximum likelihood ratio test which leads to the final classification. Tested with 800 x-ray radiography images obtained from a factory production line,the proposed algorithm achieves a sensitivity 99% and specificity 98%.
出处 《焊接学报》 EI CAS CSCD 北大核心 2015年第11期85-88,117,共4页 Transactions of The China Welding Institution
基金 2013陕西省自然科学资助项目(2013JQ8049) 陕西省教育厅重点实验室科研计划资助项目(14JS079) 2013陕西省教育厅自然科学专项资助项目(2013JK1077) 2013西安石油大学博士科研启动基金资助项目(2013BS006) 中国石油科技创新基金研究资助项目(2014D-5006-0605)
关键词 缺陷检测 压缩传感 X射线 图像识别 defect detection compress sensor X-ray image recognition
  • 相关文献

参考文献10

  • 1Carrasco M A, Mery D. Segmentation of welding defects using a robust algorithm [ J ]. Materials Evaluation, 2004, 62 ( 11 ) : 1142 - 1147.
  • 2Wang Yan, Sun Yi, Lu Peng, et al. Detection of line weld de- fects based on multiple thresholds and support vector machine [J]. NDT & E International, 2008, 41(7) : 517 -524.
  • 3李雪琴,刘培勇,殷国富,蒋红海.基于Fourier拟合曲面的X射线焊缝缺陷检测[J].焊接学报,2014,35(10):61-64. 被引量:13
  • 4蔡国瑞,都东,田原,侯润石,高志凌.基于信息融合优化搜索的X射线焊缝缺陷检测[J].焊接学报,2007,28(2):29-32. 被引量:9
  • 5孙怡,孙洪雨,白鹏,王昱,田岩平.X射线焊缝图像中缺陷的实时检测方法[J].焊接学报,2004,25(2):115-118. 被引量:46
  • 6高炜欣,胡玉衡,穆向阳,王智.基于聚类的埋弧焊X射线焊缝图像缺陷分割算法及缺陷模型[J].焊接学报,2012,33(4):37-41. 被引量:10
  • 7Baraniuk R G. Compressive sensing[ J]. IEEE Signal Processing Magazine, 2007, 24(4): 118- 121.
  • 8Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[ J]. Nature, 1996, 381 (6583) : 607 -609.
  • 9Donoho D. For most large underdetermined systems of linear e- quations the minimall 11 -norm solution is also the sparsest solution [ J]. Communications on Pure and Applied Mathematics, 2006, 59 ( 6 ) : 797 - 829.
  • 10Cande's E, Tao T. Near-optimal signal recovery from random pro- jections : universal encoding strategies[ J]. IEEE Transactions on Information Theory, 2006, 52 (12) : 5406 - 5425.

二级参考文献28

共引文献72

同被引文献46

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部