3DESSAUER M P, DUA S. Optical flow object detection, motion es- timation,and tracking on moving vehicles using wavelet decomposi- tions EC]. In: The International Soeiety for ()ptical Engineering, Bellingham,WA, USA : SPIE, 2010.
4STAUFFER C,GRIMSON W E L. Adaptive background mixture models [or real-time traekingEC. Proceedings of the Computer So- eiety Conference on Computer Vision and Pattern Recognition, 1999(2) :246-252.
5. GOYETTE N, JODOIN P M, PORIKI.I F, et al. Changedetcction. net :a new change detection benehmark datasetC3, ln: IEEE Com- puter Society Conference on Computer Vision and Pattern Recogni- tion Workshops, Piscataway, NJ, USA : IEEE, 2012 : 1 8.
1Chris S,Grimson W E L.Adaptive Background Mixture Models for Real-time Tracking[C] //Proc.of IEEE Conference on Computer Vision and Pattern Recognition.Fort Collins,CO,USA:[s.n.] ,1999.
2Collins R T,Lipton A J,Kanade T.A System for Video Surveillance and Monitoring:VSAM Final Report[R].Pittsburgh,PA,USA:Carnegie Melton University,2000.
3Deng Xiaoyu,Bu Jiajun,Yang Zhi,et al.A Block-based Background Model for Video Surveillance[C] //Proc.of IEEE International Conf.on Acoustics,Speech and Signal Processing.Las Vegas,USA:[s.n.] ,2008.
4[著],孙卫东[译].图像处理技术手册.北京:科学出版社,2007.
5Stauffer C, Grimson W E L. Adaptive background mixture models for realwtime tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition. Fort Collins, USA: IEEE, 1999. 246-252.
6Elgammal A M, Harwood D, Davis L S. Non-parametric model for background substraction. In: Proceedings of the 6th European Conference on Computer Vision. London, UK: Springer-Verlag, 2000. 751-767.
7Elgammal A, Duraiswami R, Harwood D, Davis L S. Back- ground and foreground modeling using nonparametric ker- nel density estimation for visual surveillance. Proceedings of IEEE, 2002, 90(7): 1151-1163.
8Parag T, Elgammal A, Mittal A. A framework for feature selection for background subtraction. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 1916-1923.
9Perez A, Larranaga P, Inza I. Bayesian classifiers based on kernel density estimation: flexible classifiers. International Journal of Approximate Reasoning, 2009, 50(2): 341-362.
10Banerjee A, Burlina P. Efficient particle filtering via sparse kernel density estimation. IEEE Transactions on Image Pro- cessing, 2010, 19(9): 2480-2490.