摘要
本文研究三维半空间中不可压磁流体力学方程组弱解的衰减性.当方程满足初始条件(u_0,b_0)∈L^1(R_+~3)∩L^2(R_+~3),(x_3~2u_0,x_3~2b_0)∈L^2(R_+~3),(x_3U_0,x_3b_0)∈L^1(R_+~3)∩L^(6/5)(R_+~3)时,证明了弱解(u(t),b(t))的衰减率为:‖(x_3U(t),x_3b(t))‖L^2(R_+~3)≤c(1+t)^(-5/8),其中c是与t无关的常数.
In this paper we study the L^2 time decay rate of a weak solution of the 3-dimensional incompressible Magnetohydrodynamic equations in the half space. We prove that, for initial value (U0, b0)∈L^1(R+^3)∩L^2(R+^3),(x3^2u0,x3^2b0)∈L^2(R+^3),(x3U0,x3b0)∈L^1(R+^3)∩L(6/5)(R+^3),the weak solution satisfying time decay estimates ‖(x3u(t),x3b(t))‖L^2(R+^3)≤c(1+t)^-5/8, for some c independent of t.
出处
《应用数学学报》
CSCD
北大核心
2015年第6期1016-1028,共13页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(11371147)资助项目
关键词
磁流体力学方程组
弱解
衰减
半空间
Magnetohydrodynamics equations
weak solutions
decay
half space