期刊文献+

具有非线性边界条件的趋化性模型解的爆破时间下界估计 被引量:6

Lower Bound of the Blow-up Time for a Model of Chemotaxis with Nonlinear Boundary Condition
原文传递
导出
摘要 本文主要研究具有非线性边界条件的趋化性模型的爆破现象.在对已知的数据项进行一定的约束条件下,当"爆破"发生时本文推导出了爆破时间的下界. This paper deals with the blow-up phenomena for a model of chemotaxis with nonlinear boundary conditions. Under suitable conditions on the positive initial conditions, we establish a blow-up result for certain solution with positive initial energy. Using the the differential inequality technique, lower bound for blow-up time is derived if the blow-up occurs.
出处 《应用数学学报》 CSCD 北大核心 2015年第6期1097-1102,共6页 Acta Mathematicae Applicatae Sinica
基金 广东高校优秀青年创新人才培养计划(自然科学)(2013LYM_0112)资助项目
关键词 爆破 全局解 趋化性模型 blow-up global existence chemotaxis
  • 相关文献

参考文献16

  • 1Jager W, Luckhau S. On explosions of solutions to a system of partial differential equations modeling chemotaxis. Transactions American Mathematical Society, 1992, 329:819-824.
  • 2Payne L E, Song J C. Blow-up and decay criteria for a model of chemotaxis. Journal of Mathematical Analysis and Applications, 2010, 367: 1-6.
  • 3Ball J M. Remarks on blow up and nonexistence theorems for nonlinear evolution equations. Quart Journal Mathematical Oxford, 1977, 28:473-486.
  • 4Caffarrelli L A, Friedman A. Blow-up of solutions of nonlinear heat equations. Journal of Mathe- matical Analysis Applications, 1988, 129:409-419.
  • 5Friedman A, Mcleod B. Blow-up of positive solutions of semilinear heat equations. Indiana University Mathenatics Journal. 1985, 34:425-447.
  • 6Levine H A. Nonexietence of global weak solutions to some properly and improperly posed problems of mathematical physics: the method of unbounded Fourier coefficients. Applicable Analysis, 1975, 214:205-220.
  • 7Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Dirichlet conditions. Journal of Mathematical Analysis and Applications, 2007, 328:1196-1205.
  • 8Payne L E, Philippin G A, Schaefer P W. Blow-up phenomena for some nonlinear parabolic problems. Nonlinear Analysis, 2008, 69:3495-3502.
  • 9Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Neumann conditions. Applicable Analysis, 2006, 85(10): 1301-1311.
  • 10Gao Xuyan, Ding Juntang, Guo Baozhu. Blow-up and global solutions for quasilinear parabolic equations with Neumann boundary conditions. Applicable Analysis, 2009, 88(2): 183-191.

同被引文献14

引证文献6

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部