期刊文献+

Efficient photocatalytic degradation of NO by ceramic foam air filters coated with mesoporous TiO_2 thin films 被引量:7

陶瓷泡沫空气过滤器涂覆中孔TiO_2薄膜用于室内空气净化中高效光催化降解NO(英文)
下载PDF
导出
摘要 Ceramic foam air filters with three-dimensional(3D) porous structures and high surface areas were coated with mesoporous TiO 2 thin films by the reverse micellar method. The mesoporous TiO 2 thin films efficiently photocatalytically degraded nitrogen oxide(NO). More than 92.5% of NO was degraded in a single pass for air filter samples containing different pore densities. The 3D porous structure of the ceramic air filters enhanced flow turbulence and mixing. This provided the catalytic system with excellent gas-dynamic properties,and sufficient contact between the reactant gas and catalyst surface. The higher pore density of the ceramic foam filters resulted in a higher photocatalytic rate. More adsorption sites for water vapor and the reactant and product gases improved the photocatalytic activity. The porous ceramic air filters coated with mesoporous TiO 2 had large surface areas,and thus high photocatalytic activity. This overcame the common disadvantages associated with using powdered TiO 2 photocatalysts on substrates. The 3D porous ceramic foam filters coated with mesoporous TiO 2 thin films exhibited a higher photocatalytic degradation rate of NO in air than the same thin film deposited on flat ceramic tiles. No deactivation was observed. A consistently high NO degradation rate was obtained between reaction cycles for the TiO 2-coated 3D porous ceramic filters. 由于人们80%的时间呆在室内,室内空气的质量直接影响人类健康,因此近年来室内空气质量越来越受到人们的关注.室内污染物包括CO氮氧化物(NOx)和挥发性有机化合物(VOCs),它们给人体健康带来众多负面影响.更为重要的是,考虑到节能,现代建筑的空气密闭性大都较高,但这种减少吸入新鲜空气的设计直接导致室内各种污染物的累积.有些家用电器,如燃气灶和热水器,在使用的时候会涉及到煤、油和天然气的燃烧,特别是通风较差的情况下会成为室内主要的污染源.常规的治理技术,包括吸附和过滤,其成本相对较高,也不适用于低浓度污染物的治理.尤其是更换不及时的过滤器在排风系统中可能会成为VOCs的一个来源.因此,很有必要开发一种新型的技术以降低室内污染物的浓度和保持一个清洁的室内空气环境,从而保障人们的身体健康.光催化是去除室内空气污染物的有效方法.例如,Ti O2、钛酸铋和钛酸锶等具有强氧化能力和稳定的光催化活性,因而是高效的光催化剂.一般而言,通常报道的Ti O2光催化剂是高度分散的、或悬浮于液体介质中的细小颗粒或粉末.然而,粉末状的Ti O2光催化剂不适宜于室内空气净化,因为它变得可吸入而对人体健康造成不利的影响.因此,人们尝试将Ti O2颗粒作为薄膜固定在不同的刚性载体上,如玻璃、不锈钢和铝合金板.对基体进行涂覆可显著影响光催化时反应物的表面吸附行为.一般而言,光催化薄膜通常涂覆在平面上,如蜂窝空气过滤器.三维(3D)多孔的陶瓷泡沫对气体通过具有非常好的流体性质,因此本文以它作为涂覆的基体.这种陶瓷泡沫具有3D多孔结构,多种孔密度、比表面积和化学性质.3D多孔陶瓷泡沫空气过滤器的床层空隙率较高,因此使用时压降较低,且不像蜂窝空气过滤器,它具有复杂多变的孔结构,可增强流体的扰动和混合.另外,3D多孔陶瓷泡沫空气过滤器的开发多孔和网状的结构使得在催化体系具有非常好的气体动力学性质,催化剂表面和气体反应物有充分的接触.多孔材料在液相或气相催化反应中具有独特的优势,因此,陶瓷泡沫、多孔的氧化铝、多孔硅胶.分子筛和活性炭经常被用作催化剂载体.在固体基体上Ti O2膜的形成可能使得Ti O2光催化剂的有效比表面积降低,从而导致其光催化活性下降.然而,由于具有中孔结构的Ti O2薄膜的比表面积大,其用于催化反应的活性位也更多,因此使用时仍然具有较高的活性.前期研究表明,涂覆在平面玻璃、不锈钢和氧化铝基体上的中孔Ti O2薄膜用于环境净化时表现出增强的光催化效率.另外,室内环境中NO和NO2的浓度一般分别为几百个ppb之内和100 ppb以下.可见,NO是主要的室内空气污染物,对人体健康危害较大.基于此,本文首次采用反胶束法将中孔锐钛矿Ti O2薄膜均匀一地涂覆在3D多孔高比表面积的泡沫过滤器上,采用X射线衍射、扫描电镜、X射线光电子能谱、N2吸附-脱附、紫外-可见光光谱和原子力显微镜对所制样品进行了表征,并将样品用于紫外光下催化降解NO,以揭示所制的中孔Ti O2涂层具有高的比表面积和高的光催化活性,从而克服使用Ti O2粉末所带来的不足.结果表明,由于中孔Ti O2薄膜涂层具有较大的有效比表面积,其表面存在很多吸附活性位,用于吸附在反应过程中形成的水蒸汽、气相反应物和产物,因而具有更高的光催化活性,因此在陶瓷泡沫空气净化系统中可以高效地光催化NO降解:在所考察的不同孔密度的陶瓷泡沫过滤器涂覆的Ti O2上400 ppb的NO单程转化率均在92.5%以上,高于涂覆在平面陶瓷砖上的Ti O2.该陶瓷过滤器的3D多孔特性可增强流体的扰动和混合,使得气相反应物与光催化剂表面有着充分的接触;其大的孔密度也导致高的光催化速率.另外,本文所制样品在所有反应过程中均保持较高且稳定的NO降解速率,这表明其在NO降解反应中没有失活.
作者 Wingkei Ho
出处 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2109-2118,共10页 催化学报(英文)
基金 supported by the Research Grant of the Early Career Scheme(ECS 809813) from the Research Grant Council Hong Kong SAR Government the grants from the Research Grants Council of the Hong Kong Special Administrative Region the Dean’s Research Fund-Early Career Researchers(04022) the Research Equipment Grant(REG-2) the Internal Research Grant(R3429) from the Hong Kong Institute of Education China(PolyU 5204/07E) and the Hong Kong Polytechnic University(GYX75)~~
关键词 TITANIA PHOTOCATALYSIS CERAMIC Nitrogen oxide Coating 二氧化钛 光催化 陶瓷 一氧化氮 涂覆
  • 相关文献

参考文献62

  • 1Jones A P. Atoms Environ, 1999, 33:4535.
  • 2Ao (2 H, Lee S (2. Appl Catal B, 2003, 44:191.
  • 3Ao (2 H, Lee S (2, Mak C L, Chan L Y. Appl Catal B, 2003, 42:119.
  • 4Robinson J, Nelson W C. National Human Activity Pattern Survey Data Base. United States Environmental Protection Agency (USEPA), Research Triangle Park, N(2, 1995.
  • 5United States Environmental Protection Agency. EPA Report: Characterizing Air Emissions from Indoor Sources. Washingtion DC, 1995. EPA/600/F-95/005.
  • 6Baek S O, Kim Y S, Perry tL Atoms Environ, 1997, 31:529.
  • 7Khan F I, Ghoshal A K.J Loss Prey Process Ind, 2000,13:527.
  • 8Schleibinger H, Ruden H. Atmos Environ, 1999, 33:4571.
  • 9Fujishima A, Honda K. Nature, 1972, 238:37.
  • 10Tada H, Yamamoto M, lto S. Langmuir, 1999, 15:3699.

同被引文献63

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部