期刊文献+

金属圆柱结构中声聚焦效应的研究 被引量:1

Study on acoustic focusing effect in metal cylinder structure
下载PDF
导出
摘要 研究浸没在水中金属空心圆柱结构的声聚焦效应及其物理机制,并探索声聚焦频率与圆柱结构参数之间的关系.研究表明:当超声波源从外侧入射到圆柱结构表面时,在圆柱结构中心会出现声聚焦效应.这种声聚焦效应源于金属圆柱结构中的位移本征模式,与之前研究利用负折射机制实现声聚焦效应完全不同,是一种全新的物理机制.在圆柱结构的位移本征模式作用下,入射声波的传播方向在圆柱结构内部发生重建,均沿着圆柱径向指向圆心,同时相位波形也呈现出同心圆分布,从而在圆柱结构中心聚焦成一个完美的圆形焦点,焦点在水平方向与垂直方向均表现出优异的聚焦性能.此外,基于声散射理论推导得到系统的特征方程,计算出声聚焦的特征频率,理论与数值结果符合很好.结果表明:圆柱结构可在多个频率出现声聚焦效应,相邻的两个声聚焦频率的间隔相同,且焦点的尺寸随着聚焦频率增加而变小.当金属圆柱结构的内外半径同时增大时,圆柱结构的声聚焦频率会减小,且声聚焦频率与圆柱的尺寸成反比关系.本研究为新型声聚焦器件的研制提供有效的设计思路及理论依据. In this paper,we study the exotic acoustic focusing effect through a simple brass cylinder structure immersed in water.Firstly,we calculated the acoustic pressure distributions with and without the brass cylinder,and the incident acoustic wave was emitted from the plane and cylindrical source,respectively.We found that thenbsp;propagation directions of the acoustic waves were reconstructed by the cylinder and the acoustic waves were focused on a prefect point at the center of the cylinder structure.Meanwhile,the phase distributions were also reconstructed inside the cylinder,and the phase waveforms were transformed into a series of concentric circles with the same values and eventually focused on a point at the center of the cylinder.Besides,it was noted that the excellent acoustic focusing characteristics appear in both longitudinal and transverse directions,and the focal spot in the cylinder was a perfect point rather than an elliptical spot in other acoustic focusing devices.In addition,we presented the deformation of the displacement distributions in the cylinder.It shows that the acoustic focusing arises from a special eigenmode in the cylinder structure at some eigenfrequencies,which is essentially distinct from the previous studies originating from the negative refraction.Finally,we derived the eigenvalue equations of the system according to the acoustic scattering theory,and theoretically calculated the eigenfrequencies.The numerical results agree well with the theoretical results.It is obtained that the acoustic focusing effect appears at a series of eigenfrequencies in the cylinder,and the difference between the two adjacent eigenfrequencies is a constant.Besides,the size of the focal spot decreases gradually with the increase of the focusing eigenfrequency.Furthermore,we investigated the influences of the structure parameters of the cylinder on the eigenfrequency,and found that the eigenfrequencis decreased with the increase of the inside and outside radii of the cylinder.Therefore,we conclude that there is an inverse relationship between the focusing eigenfrequency and the size of the cylinder.Our finding should have great potential applications in acoustic focusing devices.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期1132-1138,共7页 Journal of Nanjing University(Natural Science)
基金 国家重点基础研究发展计划(2012CB921504) 国家自然科学基金(11174142,11404147) 江苏省自然科学基金(BK20140519) 中国博士后基金(2015M571672) 江苏大学高级人才基金(13JDG106) 江苏大学青年骨干教师培养工程 江苏大学大学生实践创新训练项目 江苏大学科研立项 江苏大学工业中心创新训练项目 江苏省大学生实践创新训练项目(201510299047Y)
关键词 声聚焦 本征模式 acoustic focusing cylinder intrinsic mode
  • 相关文献

参考文献17

  • 1任悦,刘杰惠,刘晓宙,龚秀芬.基于有限元分析的超声弹性成像仿真研究[J].南京大学学报(自然科学版),2015,51(1):7-13. 被引量:3
  • 2Deng K.Ding Y Q,He Z J,et al.Graded negative index lens with designable focal length by phononic crystal. Journal of Physics D: Applied Physics.2009 ,12(18) : 185505.
  • 3LinSC S, Huang T J,Sun J H,et al. Gradient index phononie crystals. Physical Review B. 2009,79(9) :091302.
  • 4Martin T P, Nicholas M, Orris G J, et al. Sonic gradient index lens for aqueous applications. Applied Physics Letters,2010,97(11) : 113503.
  • 5Marlin T P, Layman G N, Moore K M. el ul. Elastic shells with high contrast ntat erial properties as acoustic metamaterial components. Physical Review B,2012,85(16) : 161103.
  • 6Torrent D, Scinchez-Dehesa J. Acoustic meta- materials for new two-dimensional sonic devices. New Journal of Physics,2007,9(9):323-335.
  • 7Peng S S, He Z J,Zhang A Q,el al. Acoustic far field focusing effect for two-dimensional graded negative refractive index sonic crystals. Applied Physics Letters, 2010,96 ( 26 ) : 263502.
  • 8Zhang S, Yin L, Fang N. Focusing uhrasnund with an acoustic metamaterial network. Physical Review Letters.2009,102(19) : 194301.
  • 9Zhou X, Hu G. Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass. Applied Physics l.etters, 2011. 98(26) :263510.
  • 10Zigoneanu L,Popa i3 l,Cummer S A. Design and measurements of a broadband lwo dimensional acoustic lens. Physical Review B. 2011 , 84(2) :024305.

二级参考文献9

共引文献2

同被引文献21

  • 1Lu H Y, Song G Y,Cheng Q. Design and measurements of a two dimensional metamaterial acoustic lens. Journal of Nanjing University(Natural Sciences), 2015, 51(6) :1115-1119.
  • 2Yu S Y, Zhang H,Lu M H. Surface acoustic band structures and eigen modes in phononic crystals based on surface acoustic waves. Journal of Nanjing University (Natural Sciences) ,2015,51(6) :1108-1113.
  • 3Ren Y,Liu J H,Liu X Z, et al. Simulation of ultrasound elastography based on finite element analysis. Journal of Nanjing University ( Natural Sciences ), 2015, 51(1) :7-13.
  • 4Mei J,Ma G,Yang M,et al. Dark acoustic meta- materials as super absorbers for low-frequency sound. Nature Communications, 2012,3 (2) : 756.
  • 5Ma G, Yang M, Xiao S, et al. Acoustic metasurface with hybrid resonances. Nature Materials, 2014,13 (9) : 873.
  • 6Leroy V, Strybulevych A, Lanoy M, et al. Supera bsorption of acoustic waves with bubble metascreens. Physical Review B, 2015, 9(2) : 1020301.
  • 7Cai X, Guo Q, Hu G, et al. Ultrathin low- frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators. Applied Physics Letters, 2014, 105(12) :121901.
  • 8Cheng Y, Zhou C, Yuan B G, et al. Ultra-sparse metasurfaee for high reflection of low frequency sound based on artificial Mie resonances. Nature Materials, 2015,14 (10) :1013.
  • 9Chocano V M G, Dehesa J S. Anomalous sound absorption in lattices of cylindrical perforated shells. Applied Physics Letters,2015,106(12):124104.
  • 10Li R Q, Zhu X F, Liang B, et al. A broadband acoustic omnidirectional absorber comprising positive-index materials. Applied Physics Letters,2011,99(19) :193507.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部