期刊文献+

基于多目标分层遗传模糊建模的磨矿过程溢流粒度软测量 被引量:4

Multi-objective hierarchical genetic fuzzy modeling for soft-sensor of overflow particle size in grinding process
原文传递
导出
摘要 提出一种基于多目标分层遗传算法的模糊系统对溢流粒度进行软测量,该方法将模糊系统分为4层,即输入层、隶属度层、规则库层和系统集成层.为了达到各层共同进化的目的,设计遗传算法各层编码策略,构建基于平均绝对百分误差和均方根误差的优化目标函数,并采用该函数计算各层个体的适应度.鉴于模糊模型训练过程中可能出现异常解,将L-M贝叶斯正则化方法融入训练过程.对磨矿生产数据的仿真实验验证了所提出方法的有效性. A fuzzy system based on multi-objective hierarchical genetic method is proposed to measure the overflow particle size. The fuzzy system are divided into four layers: the input layer, the membership layer, the rule base layer and the system layer. In order to achieve the purpose of co-evolution for each layer, a coding strategy for each layer is designed here. The mean absolute percentage error(MAPE) and root mean square error(RMSE) are considered as the optimization target to calculate the fitness value of each individual. A L-M Bayesian regularization algorithm is used for training the fuzzy system to avoid the ill-conditioned solution. The experimental results using a series of practical production data coming from a grinding plant show the effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2015年第12期2187-2192,共6页 Control and Decision
基金 国家自然科学基金项目(61273037 61304213 61473056) 国家863计划项目(2013AA040703) 中央高校基本科研业务费专项资金项目(DUT13RC203)
关键词 溢流粒度 软测量 多目标分层遗传算法 L-M贝叶斯正则化 overflow particle size soft-sensor multi-objective hierarchical genetic algorithms L-M Bayesian regularization algorithms
  • 相关文献

参考文献12

  • 1Garcia O, Cobos J A, Prieto R, et al. Single phase power factor correction: A survey[J]. IEEE Trans on Power Electronics, 2003, 18(3): 749-755.
  • 2张晓东,王伟,王小刚.选矿过程神经网络粒度软测量方法的研究[J].控制理论与应用,2002,19(1):85-88. 被引量:18
  • 3王新华,桂卫华,王雅琳,阳春华.混合核函数支持向量机的磨矿粒度预测模型[J].计算机工程与应用,2010,46(12):207-209. 被引量:10
  • 4盛春阳,赵珺,王伟,刘颖.基于T-S模型的高炉煤气系统模糊建模[J].上海交通大学学报,2012,46(12):1907-1913. 被引量:4
  • 5Yusof R, Rahman R Z A, Khalid M, et al. Optimization of fuzzy model using genetic algorithm for process control application[J]. J of the Franklin Institute, 2011, 348(7): 1717-1737.
  • 6Delgado M R, Von Zuben F, Gomide F. Hierarchical genetic fuzzy systems[J]. Information Sciences, 2001, 136(1): 29-52.
  • 7Mendes J, Souza F, Araujo R, et al. Genetic fuzzy system for data-driven soft sensors design[J]. Applied Soft Computing, 2012, 12(10): 3237-3245.
  • 8Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
  • 9Grefenstette J J. Multilevel credit assignment in a genetic learning system[C]. Proc of the 2nd Int Conf on Genetic Algorithms and Their Applications. London: Psychology Press, 2013: 705-706.
  • 10蒋强,肖建,何都益,蒋伟,王梦玲.基于T-S模型的模糊系统辨识方法综述[J].计算机应用研究,2009,26(6):2008-2012. 被引量:9

二级参考文献58

共引文献36

同被引文献29

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部