期刊文献+

面向采煤机概念设计的模型推理算法研究 被引量:1

Algorithm Research of Model Reasoning for Shearer Conceptual Design
下载PDF
导出
摘要 为充分利用企业经验知识,减少对领域专家的过分依赖,实现数据驱动的采煤机概念设计。面向采煤机概念设计过程,基于ε-支持向量回归理论,利用遗传算法优选模型参数,寻找采煤机条件属性与决策属性间的映射关系,建立了采煤机概念设计推理模型。以UCI标准测试数据集中Mpg、Housing回归测试数据验证了模型具有较高的准确性和可行性。通过该模型设计人员可以由采煤机采高、截深等原始输入参数推理出牵引功率等总体技术输出参数,为传统经验设计提供了科学依据,节约了设计时间与成本。 To make full use of experience knowledge of enterprises, reduces excessive rely on domain experts, and realizes the conceptual design of shearer driven by data. It established the reasoning model for shearer conceptual design based on ε- support vector regression theory, using genetic algorithm to optimize parameters and look for the mapping relationship between condition attributes and decision attributes. It validated the model's accuracy and feasibility by regression-test data Mpg and Housing in UCI standard test data set. The model can help designers get the technical parameters such as the traction power by inputting mining height, cutting depth and other primitive parameters, providing a scientific basis for traditional experience design, and saving the design time and cost.
作者 常琦 丁华
出处 《机械设计与制造》 北大核心 2015年第12期8-11,共4页 Machinery Design & Manufacture
基金 山西省科技重大专项(20111101040) 山西青年科技基金项目(2012021022-6) 太原理工大学青年团队启动项目(1205-04020102)
关键词 采煤机 概念设计 数据挖掘 模型推理 支持向量机 遗传算法 Shearer Conceptual Design Data Mining Model Base Reasoning Support Vector Machine Genetic Algorithm
  • 相关文献

参考文献10

  • 1Li Wen-qiang, Li Yah,Wang Jian.The process model to aid innovation of products conceptual design [ J ].Expert Systems with Applications, 2010 (37):3574-3587.
  • 2陈建华,何彬彬,崔莹,刘岳,何中海.面向智能成矿预测的案例推理模型与方法[J].中国矿业大学学报,2012,41(1):114-119. 被引量:2
  • 3E.Roldan Reyes,S.Negny,G.Cortes Robles,el al.Impmvemeut of online adaptation knowledge acquisition and reuse in case based reasoning: appl- ication to process engineering design[J ].Engineering Applications of Art- ificial Intelligence, 2015( 41 ) : 1-16.
  • 4Hitoshi Komoto, Tetsuo Tomiyama.A framework for computet,-aided conc- eptual design and its application to system architecting of mechatronics products[ J].Computer Aided Design, 2012( 44 ) : 931-946.
  • 5P. Hehenberger,M. Follmer,R.C, eirhofer.Model based system design of annealing simulators[J ].Mechatronics, 2013 (23): 247-256.
  • 6Giacomo Barbieri,Cesare Fantuzzi,Roberto Borsari.A medel-based design methodology for the development of mechatronics systems [J].Mechatron-ies, 2014( 24 ):833-843.
  • 7蔡志强,司书宾,孙树栋,王宁.基于贝叶斯网络的不确定环境装备故障推理模型[J].西北工业大学学报,2011,29(4):509-514. 被引量:13
  • 8Chih-Chung Chang,Chih-Jen Lin,LIBSVM:A Library for Support Vector Machines [EB/OL].2010,4,15,http://www.csie.ntu.edu.tw/-cjlin.
  • 9Faruto.A toolbox with implements for support vector machines based on libsvm, [ EB/OL ].2011,6,11, http://www.matlabsky.com.
  • 10杜京义,侯媛彬.基于遗传算法的支持向量回归机参数选取[J].系统工程与电子技术,2006,28(9):1430-1433. 被引量:39

二级参考文献26

  • 1杜云艳,苏奋振,仉天宇,杨晓梅,周成虎.基于案例推理的海洋涡旋特征信息空间相似性研究[J].热带海洋学报,2005,24(3):1-9. 被引量:8
  • 2韩光臣,孙树栋,司书宾,付平.复杂系统故障传播与故障分析模型研究[J].计算机集成制造系统,2005,11(6):794-798. 被引量:18
  • 3成秋明.非线性成矿预测理论:多重分形奇异性-广义自相似性-分形谱系模型与方法[J].地球科学(中国地质大学学报),2006,31(3):337-348. 被引量:108
  • 4Al-Garni A, Jamal A, Ahmad A, et al. Neural Network-Based Failure Rate Prediction for De Havilland Dash-8 Tires. Engineering Applications of Artificial Intelligence. 2006. 19 (6) : 681-691.
  • 5Shalev D M, Tiran J. Condition-Based Fault Tree Analysis (CBFFA): A New Method for Improved Fault Tree Analysis (FFA). Reliability and Safety Calculations. Reliability Engineering and System Safety, 2007, 92(9) : 1231 - 1241.
  • 6Hou S, Li Y. Short-Term Fault Prediction Based on Support Vector Machines with Parameter Optimization by Evolution Strategy. Expert Systems with Applications, 2009, 36(10) : 12383 - 12391.
  • 7Jensen F. An Introduction to Bayesian Networks. London: UCL Press, 1996.
  • 8Lee E, Park Y, G Shin J. Large Engineering Project Risk Management Using a Bayesian Belief Network. Expert Systems with Applications, 2009, 36(3): 5880 -5887.
  • 9Langseth H, Portinale L. Bayesian Networks in Reliability. Reliability Engineering and System Safety, 2007, 92( 1 ) : 92 - 108.
  • 10Muller A, Suhner C, lung B. Formalisation of a new prognosis model for supporting proactive maintenance implementation on industrial system. Reliability Engineering and System Safety, 2008, 93 (2) : 234 - 253.

共引文献51

同被引文献24

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部