期刊文献+

轴向运动Rayleigh梁固有频率的微分求积法 被引量:2

Natural Frequency Analysis of Axially Moving Rayleigh Beam Using the Differential Quadrature Method
下载PDF
导出
摘要 轴向运动梁的振动和稳定性问题是振动力学问题研究的重要内容之一,它有着重要的理论和实际意义。研究了轴向运动Rayleigh梁的固有频率。根据广义哈密顿原理建立轴向运动Rayleigh梁横向振动的控制方程。采用微分求积法数值求解两端简支和两端固支边界条件下轴向运动Rayleigh梁的次临界固有频率。数值例子给出了变化梁的弯曲刚度和支撑刚度情况下第一阶和第二阶固有频率和速度之间的关系曲线。通过曲线间的关系可得到:高阶固有频率比低阶固有频率大,固有频率随着刚度系数的增大而增大,并且随着支撑刚度的增大而增大。 The problem of vibration and stability of axially moving beam is very important in vibration mechanics, involving theoretical practical meaning. Natural frequencies of axial moving Rayleigh beam are investigated. The general Hamiltonian principle is developed to derive the transverse vibration equations of the axially moving Rayleigh beams. Under the simply and clamped supported boundary conditions, uses the differential quadrature method to calculate the subcritical natural frequencies of the axially moving Rayleigh beams. Numerical examples give the variations of the first and second natural frequencies venus mean velocities for various flexural rigidities and support rigidities, respectively. The results illustrate that natural frequency is bigger high orders than low orders and increases with flexural and support rigidities increases
作者 汪昌国 王波
出处 《机械设计与制造》 北大核心 2015年第12期69-72,共4页 Machinery Design & Manufacture
基金 国家自然科学基金项目(11202136)
关键词 轴向运动Rayleigh梁 微分求积法 固有频率 广义哈密顿原理 Axially Moving Rayleigh Beam The Differential Quadrature Method Natural Frequency Generalized Hamilton Principle
  • 相关文献

参考文献3

二级参考文献22

  • 1李晓军,陈立群.关于两端固定轴向运动梁的横向振动[J].振动与冲击,2005,24(1):22-23. 被引量:13
  • 2Mote C D Jr.A study of band saw vibrations.Journal of the Franklin Institute,1965,279:430~444.
  • 3Simpson A.Transverse modes and frequencies of beams translating between fixed end supports.Journal of Mechanical Engineering Science,1973,15:159~164.
  • 4Wickert J A,Mote C D Jr.Classical vibration analysis of axially moving continua.ASME Journal of Applied Mechanics,1990,57(3):738~744.
  • 5Wickert J A,Mote C D Jr.Response and discretization methods for axially moving materials.Applied Mechanics Reviews,1991,44:S279~284.
  • 6Oz H R,Pakdemirli M.Vibrations of an axially moving beam with time dependent velocity.Journal of Sound Vibration,1999,227(2):239~257.
  • 7Oz H R.On the vibrations of an axially traveling beam on fixed supports with variable velocity.Journal of Sound Vibration,2001,239:556~564.
  • 8Ozkaya E,Oz H R.Determination of natural frequencies and stability regions of axially moving beams using artificial neural networks method.Journal of Sound Vibration,2002,252(4):782~789.
  • 9Kong L,Parker R G.Approximate eigensolutions of axially moving beams with small flexural stiffness.Journal of Sound and Vibration,2004,276:459~469.
  • 10Pasin F.Ueber die stabilit at der beigeschwingungen von in laengsrichtung periodisch hin und herbewegten st ben.Ingenieur-Archiv,1972,41(3):387~393.

共引文献28

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部