期刊文献+

利用TMF和置信传播的无监督SAR图像分割

Unsupervised SAR image segmentation using TMF and belief propagation
下载PDF
导出
摘要 针对三重马尔可夫场模型传统统计推断方法无法兼顾分割精度和计算效率的问题,提出了一种高效的利用置信传播的三重马尔可夫场模型统计推断方法,并应用于无监督合成孔径雷达图像分割.该算法结合三重马尔可夫场模型和合成孔径雷达图像统计特性,将图像分割问题转化为三重马尔可夫场的最大后验边缘估计问题.针对三重马尔可夫场中的两个标记场,将置信传播算法推广到二元情形,通过消息传递的方式估计双标记场的联合后验边缘概率,并依据最大后验边缘准则同时实现两个标记场的估计.模拟图像和实测合成孔径雷达图像的仿真实验结果表明,该算法能有效抑制相干斑的影响,能以合理的计算代价获得精确的分割结果. To solve the problem that the traditional statistical inference approach for the triplet Markov fields (TMF) model cannot balance segmentation accuracy and computational efficiency, an efficient statistical inference approach for the TMF model using belief propagation is proposed, and then applied to unsupervised synthetic aperture radar (SAR) image segmentation. The algorithm combines the TMF model and the statistical property of the SAR image, and translates the segmentation problem into maximization of the posterior marginal (MPM) estimation. For the two label fields in TMF, the belief propagation algorithm is generalized to the bivariate case to estimate the joint posterior marginal probability of the two label fields through message passing. The two label fields can he simultaneously estimated according to the MPM criterion. Experiments on both simulated and real SAR images demonstrate that the proposed algorithm can efficiently suppress the influence of the speckle, and obtain accurate segmentation results with a reasonable computational cost.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第6期49-55,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(61272281,61271297,61301284) 高等学校博士点专项科研基金资助项目(20110203110001) 中央高校基本科研业务费专项资金资助项目(WRYB142310,JDYB140507) 陕西省自然科学基金资助项目(2015JM6288)
关键词 合成孔径雷达 图像分割 三重马尔可夫场 置信传播 synthetic aperture radar image segmentation triplet Markov fields belief propagation
  • 相关文献

参考文献15

  • 1Shui P L,Zhang Z J.Fast SAR Image Segmentation via Merging Cost with Relative Common Boundary Length Penalty [J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(10):6434-6448.
  • 2Zhang H,Wu Q,Nguyen T,et al.Synthetic Aperture Radar Image Segmentation by Modified Student's t-mixture Model [J].IEEE Geoscience and Remote Sensing Letters,2014,52(7):4391-4403.
  • 3崔艳鹏,胡建伟,杨绍全,朱燕.利用DT-GrowCut的MSTAR SAR图像自动分割技术[J].西安电子科技大学学报,2011,38(3):150-154. 被引量:6
  • 4Deng H,Clausi D.Unsupervised Segmentation of Synthetic Aperture Radar Sea Ice Imagery Using a Novel Markov Random Field Model [J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):528-538.
  • 5Benboudjema D,Pieczynski W.Unsupervised Statistical Segmentation of Nonstationary Images Using Triplet Markov Fields [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,39(8):1367-1378.
  • 6Wang F,Wu Y,Zhang Q,et al.Unsupervised SAR Image Segmentation Using Higher Order Neighborhood-based Triplet Markov Fields Model [J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(8):5193-5205.
  • 7Lian X J,Wu Y,Zhao W,et al.Unsupervised SAR Image Segmentation based on Conditional Triplet Markov Fields [J].IEEE Geoscience and Remote Sensing Letters,2014,11(7):1185-1189.
  • 8Zhang P,Li M,Wu Y,et al.Unsupervised SAR Image Segmentation Using a Hierarchical TMF Model [J].IEEE Geoscience and Remote Sensing Letters,2013,10(5):971-975.
  • 9Corner M,Delp E.The EM/MPM Algorithm for Segmentation of Textured Images:Analysis and Further Experimental Results [J].IEEE Transactions on Image Processing,2000,9(10):1731-1744.
  • 10Boykov Y,Veksler O,Zabih R.Fast Approximate Energy Minimization via Graph Cuts [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(11):1222-1239.

二级参考文献22

  • 1Gan Rongbing,Wang Jianguo.Distribution-based CFAR detectors in SAR images[J].Journal of Systems Engineering and Electronics,2006,17(4):717-721. 被引量:2
  • 2Oliver C,Quegan S.Understanding Synthetic Aperture Radar Images[M].Norwood:Artech House,1998.
  • 3Xing X W,Chen Z L,Zou H X,et al.A Fast Algorithm Based on Two-stage CFAR for Detecting Ships in Sar Images[C]//Proceedings of the 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar.Xi'an:IEEE,2009:506-509.
  • 4Geman S,Geman D.Stochastic Relaxation,Gibbs Distributions,and the Bayesian Restoration of Images[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1984,6(6):721-741.
  • 5Li S Z.Markov Random Field Modeling in Image Analysis[M].2nd Edition.Tokyo:Springer-Verlag Press,2001.
  • 6Deng Huawu,Clausi D A.Unsupervised Segmentation of Synthetic Aperture Radar Sea Ice Imagery Using a Novel Markov Random Field Model[J].IEEE Trans on Geoscience and Remote Sensing,2005,43(3):528-538.
  • 7Tran H N,Wehrens R,Hoekman D H,et al.Initialization of Markov Random Field Clustering of Large Remote Sensing Images[J].IEEE Trans on Geoscience and Remote Sensing,2005,43(8):1912-1919.
  • 8Kim D W,Lee K H,Lee D.Fuzzy Cluster Validation Index Based on Inter-cluster Proximity[J].Pattern Recognition Letters,2003(24):2561-2574.
  • 9Shen S,Sandham W,Granat M,et al.MRI Fuzzy Segmentation of Brain Tissue Using Neighborhood Attraction with NeuralNetwork Optimization[J].IEEE Trans on Information Technology in Biomedicine,2005,3(9):459-467.
  • 10Petrosino A,Salvi G.Rough Fuzzy Set Based Scale Space Transforms and Their Use in Image Analysis[J].International Journal of Approximate Reasoning,2006(41):212-228.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部