期刊文献+

基于BF-WS的肝脏CT图像自动分割 被引量:3

BF-WS based automatic segmentation for liver CT images
下载PDF
导出
摘要 由于血液的流动以及肝脏收缩与舒张,在腹部CT图像中存在一定量的噪声,会产生局部梯度极大值区域、弱边界、伪影等不良现象,加之腹部内器官分布紧密且灰度值接近,使得肝脏分割尤为困难.为此,首先采用改进的双边滤波算法,自适应的对腹部CT图像进行平滑滤波处理;其次,将自适应双边滤波算法和标记控制的分水岭算法有机融合起来,采用基于中值的多阈值最大类间方差算法提取肝脏标记,并运用分水岭分割算法进行精确分割;最后,分析对比不同的肝脏分割方法,表明该方法能够更有效地去除噪声,保留目标边界,提高肝脏分割的准确率. Because of blood flow, liver systolic and diastolic, there is a certain amount of noise in abdomen CT image, which probably produce the local gradient maximum region, weak boundary, artifacts and other undesirable phenomena. At the same time, abdominal organs and similar gray values make liver segmentation is filled with challenges. Therefore, first of all, an improved bilateral filtering algorithm is proposed, abdomen CT images are preproeessed adaptively. Secondly, the improved bilateral filtering algorithm is combined with a marked watershed algorithm, and liver markers are extracted through the improved multi-threshold otsu algorithm based on the median; Finally, experiments show that can not only eliminate noise but also preserve the edge information. It will improve the accuracy of liver segmentation.
出处 《浙江工业大学学报》 CAS 北大核心 2015年第6期630-635,共6页 Journal of Zhejiang University of Technology
基金 国家自然科学基金资助项目(31471416) 浙江省自然科学基金资助项目(LY14C130015)
关键词 肝脏分割 自适应双边滤波 基于中值的多阈值最大类间方差算法 标记分水岭算法 liver segmentation adaptive bilateral filtering median-based multi-threshold otsualgorithm marked watershed algorithm
  • 相关文献

参考文献25

  • 1彭丰平,鲍苏苏.CT序列图像中肝脏及其管道的分割[J].计算机工程与应用,2009,45(20):205-207. 被引量:13
  • 2BOVIK A C, HUANG T S, MUNSON D C. The effect of median filtering on edge estim-ation and detection [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1987,9(2) : 181-194.
  • 3ANTER A M, AZAR A T, HASSANIEN A E, et al. Auto- matic computer aided segmentation for liver and hepatic lesions using hybrid se-gmentations techniques [ C]//Computer Sci- enceand Information Systems (FedCSIS). Krakow: IEEE, 20137193-198.
  • 4TOMASI C, MANDUCHI R. Bilateral filteringfor gray and color images[C]//Sixth Interna-tional Conference on Comput- er Vision. Bomb-ay IEEE, 1998 : 839-846.
  • 5张志强,王万玉.一种改进的双边滤波算法[J].中国图象图形学报,2009,14(3):443-447. 被引量:75
  • 6陈潇红.基于相似性判断的双边滤波改进算法[J].计算机工程,2012,38(22):183-185. 被引量:7
  • 7余博,郭雷,赵天云,钱晓亮.红外图像的自适应混合双边滤波算法[J].红外与激光工程,2012,41(11):3102-3107. 被引量:11
  • 8VIJAYA G, SUHASINI A. An adaptive repro-cessing of lung CT images with various {ihe-rs for better enhancement [J]. Academic Jour-nal of Cancer Research,2014,7(3) : 179-184.
  • 9ZHAO Y, ZAN Y, WANG X, et al. Fuzzy c-means cluste- ring-based multilayer perception neural network {or liver CT images automaticsegmentation[J]. Control and Decision Con {er-enee(CCDC), 2010,22 : 3423-3427.
  • 10SHI N, LIU X, GUAN Y. Research on k-mea ns clustering algorithm: an improved k-meansclustering algorithm [C]// Third International Symposium on Intelligent Information Technu-logy and Security Informatics (IITSI). Jinggan-gs- han IEEE, 2010 : 63-67.

二级参考文献107

共引文献204

同被引文献9

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部