期刊文献+

基于级联Adaboost与示例投票的人脸检测 被引量:1

Face Detection Based on Cascade Adaboost and Exemplar Voting
下载PDF
导出
摘要 传统的人脸检测算法在复杂背景、极端光照等非控条件下进行人脸检测的误检率较高。为有效降低误检率,文中提出一种级联Adaboost和示例投票的人脸检测方法。首先采用基于LBP特征的Adaboost算法初步定位人脸可能存在的区域,然后通过人脸示例集建立字典,使用稀疏编码的方法利用示例人脸对这些候选区域进行中心位置投票,根据得票数得到判别结果,排除非人脸区域,最终完成人脸检测。该方法的创新在于将基于字典学习的稀疏编码和基于部件模型的目标检测相结合,级联传统的Adaboost算法,实现非控环境下的人脸检测。在两个数据集上的实验结果表明,该方法在保持较高检测率的同时,有效降低了误检率,且鲁棒性较好。 In the conditions of complicated backgrounds and extreme illumination, face detection based on Adaboost algorithm usually has a higher false positive rate. Present a cascade of two algorithms in this paper, Adaboost and exemplar-based voting, to detect face in static images which is able to reduce the false-positives efficiently. This method utilizes LBP as features and a cascade Adaboost classifier is used to detect faces, and a voting method based on sparse coding is used as the final classifier to verify face or non-face. The innovation of the proposed method lies in combining sparse coding and part based model for face detection. The experimental result shows that this method can detect face with high detection rate, suppressing the error detection rate, with high robustness.
作者 陈骁 金鑫
出处 《计算机技术与发展》 2015年第12期18-21,27,共5页 Computer Technology and Development
基金 江苏省科研创新基金(KYLX_0289)
关键词 人脸检测 LBP特征 ADABOOST算法 稀疏编码 示例投票 face detection LBP feature Adaboost algorithm sparse coding exemplar-based voting
  • 相关文献

参考文献17

二级参考文献141

  • 1Viola P, JonesRobust M. real-time object detection[R]. Technical Report 2001 /01, Compaq CRL,2001.
  • 2Freund Y, Schapire R E. Experiments with a new boosting algorithm[ C]//Proc of the 13th International Corderence on Machine Learning. San Francisico: [s. n. ], 1996:148 - 156.
  • 3Papageorgiou C,Oren M, Poggio T. A General Framework for Object Detection[ C] //International Corgerence on Computer Vision ( ICCV' 98). Bombay, India: [ s. n. ], 1998: 555 - 562.
  • 4Paul V, Michael J. Robust Real- time Object Detection[ C]// Second International Worksho on Statistical and Computational Theories of Vision--Modeling, Leaning, Computing, and Sampling. Vancouver, Canada: [ s. n. ] ,2001.
  • 5Viola P,Jones M. Rapid object detection using a boosted cascade of simple features[ C]//Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer S6eiety Corderenee. Kauai, Hawaii: [ s. n. ], 2001:511 - 518.
  • 6Lienhart R, Maydt J. An extended set of Haar - like features for rapid object detection[ C]//Image Processing. 2002. Proceedings. 2002 International Conference. New York, USA: [ s. n. ],2002: 900 - 903.
  • 7Lienhart R, Kuranov A, Pisarevsky V. Empirical analysis of detection cascades of boosted classifiers for rapid object[ C]// in Proceedings of the 25th Pattern Recognition Symposium (DAGM' 03). Magdeburg, Germany: [s. n. ], 2003:297 - 304.
  • 8YANG J,LU W,WAIBEL A.Skin-color modeling and adaptation[C]// Third Asian Conference on Computer Vision.London:Springer-Verlag,1998:687-694.
  • 9KAKUMANU P,MAKROGIANNIS S,BOURBAKIS N.A survey of skin-color modeling and detection methods[J].Pattern Recognition,2007,40(3):1106-1122.
  • 10VIOLA P,JONES M.Rapid object detection using a boosted cascode of simple features[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,2001:511-518.

共引文献427

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部