期刊文献+

基于神经网络的微博情感分析 被引量:14

Sentiment Analysis of Micro-blog Based on Neural Networks
下载PDF
导出
摘要 微博情感分析的目的是发现用户对热点事件的态度及观点,目前已有的相关研究大部分是使用SVM根据手工标注的微博情感特征对微博进行情感分析,然而由于微博文本通常含有有限的上下文信息,因而对其进行情感分析是具有挑战性的。为了能有效地解决这一任务,文中提出基于卷积的神经网络结构模型,被命名为汉字到句子卷积神经网络。该网络使用两个卷积层从任何规模的字和句子中抽取相关特征,从字到句子级层面卷积神经网络信息来完善短文本的信息进行微博情感分析。通过实验来证明卷积神经网络对于微博情感分析的有效性,并与基于层次结构的多策略方法和基于词典与机器学习的方法进行对比,结果表明文中提出的方法对于微博短文本情感分析更有效。 The purpose of the micro-blog sentiment analysis is to identify the users' attitudes and opinions of the hot events. At present, most of the existing researches did the micro-blog sentiment analysis by using SVM, which is based on the manual annotation of micro- blog sentimental features. However, micro-blog always contains the limited contextual information that leads to the challenge of sentiment analysis of micro-blog messages. In order to deal with it efficiently,propose the sentiment analysis of micro-blog based on convolutional neural networks method. It was named as the sentence level to word level convolution neural network, which uses two layers to extract rel- evant features from the convolution of any size words and sentences. It performs sentiment analysis of micro-blog from word to sentence level information and uses convolution to improve the short text messages of the neural network information. Conduct experiments to prove the effectiveness of the convolution neural network for micro-blog sentiment analysis,and take the experiments contrasts with the other two methods, which are hierarchical structure based hybrid approach and lexicon and machine learning based methods on the senti- ment analysis of micro-biog. The experiments results show that this method has better performance in sentiment analysis of micro-biog.
出处 《计算机技术与发展》 2015年第12期161-164,168,共5页 Computer Technology and Development
基金 国家自然科学基金资助项目(61273328)
关键词 微博 情感分析 神经网络 特征 短文本 micro-blog sentiment analysis neural networks features short text
  • 相关文献

参考文献14

二级参考文献159

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:122
  • 3王飞跃.开源情报与网络时代的国家安全[J].科学新闻,2007(3):9-9. 被引量:16
  • 4M.Q. Hu, B. Liu. Mining and Summarizing Custom- er Reviews[C]//ACM SIGKDD 2004.. 168-177.
  • 5Bo Pang, Lillian Lee. Opinion mining and sentiment a- nalysis[C]//Foundations and Trends in Information Retrieval, 2(1-2):1-135.
  • 6M.Q. Hu, B. Liu. Opinion Extraction and Summari- zation on the Web[C]//AAAI06, Boston: 1621-1624.
  • 7H. Yu, V. Hatzivassiloglou. Towards Answering O- pinion Question: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences[C]// EMNLP'03 : 129-136.
  • 8Bo Pang, Lillian Lee, Shivakumar Vaithyanathan. Thumbs up? sentiment classification using machine learning techniques[C]//ACL'02: 79-86.
  • 9Bo Pang, Lillian Lee. A sentimental education: Senti- ment analysis using subjectivity summarization based on minimum cuts[C]//ACL'04: 271-278.
  • 10E. Riloff, J. Wiebe. 2003. Learning extraction pat-terns for subjective expressions[C]//EMNLP'03: 105- 112.

共引文献467

同被引文献140

引证文献14

二级引证文献190

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部