期刊文献+

非线性—阶周期问题的Ambrosetti-Prodi型结果

Ambrosetti-Prodi type results of the nonlinear first-order periodic problem
下载PDF
导出
摘要 研究了一阶周期问题u'(t)=a(t)g(u(t)u(t)-b(t)f(u(t))+s,t∈R,u(t)=u(t+T)解的个数与参数s(s∈R)的关系,其中a∈C(R,[0,∞)),b∈C(R,(0,∞))均为T周期函数.∫0Ta(t)dt>0;_f,g∈C(R,[0,∞)).当u>0时,f(u)>0,当u≥0时,0<l≤g(u)<L<∞.运用上下解方法及拓扑度理论,获得结论:存在常数s_1∈R,当s<s_1时,该问题没有周期解;s=s_1时,该问题至少有一个周期解;s>s_1时,该问题至少有两个周期解. This paper shows the relationship between the parameter s and the number of solutions of the first-order periodic problem u'(t)=a(t)g(u(t))u(t)-b(t)f(u(t))+s,t∈R u(t)=u(t+T),where a ∈ C(R,[0,∞)),b ∈ C(R,(0,∞)) are T-periodic,∫0T a(t)dt 0;f,g ∈ C(R,[0,∞)),and f(u) 0 for u 0,0 l≤ g(u) L ∞ for u≥0.By using the method of upper and lower solutions and topological degree techniques,we prove that there exists s1 ∈R,such that the problem has zero,at least one or at least two periodic solutions when s s1,s=s1,s s1,respectively.
作者 马陆一
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期53-58,共6页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(11361054) 甘肃省自然科学基金(1208RJZA258)
关键词 Ambrosetti-Prodi问题 上下解方法 拓扑度 Ambrosetti-Prodi problem upper and lower solutions topological degree
  • 相关文献

参考文献10

  • 1AMBROSETTI A, PRODI G. On the inversion of some differentiable mappings with singularities between Banach spaces [J]. Ann Mat Pura Appl, 1972, 93: 231-247.
  • 2FABRY C, MAWHIN J, NKASHAMA M N. A multiplicity result for periodic solutoins of forced nonlinear second order ordinary differental equations [J]. Bull London Math Soc, 1986, 18: 173-180.
  • 3RACHUNKOVA I. Multiplicity results for four-point boundary value problems [J]. Nonlinear Anal, 1992, 18: 497-505.
  • 4BEREANU C, MAWHIN J. Existence and multiplicity results for periodic solutions of nonlinear difference equations [J]. J Difference Equ Appl, 2006, 12: 677-695.
  • 5BEREANU C, MAWHIN J. Existence and multiplicity results for some nonlinear problems with singular - Laplacian [J]. J Differential Equations, 2007, 243(2): 536-557.
  • 6WANG H Y. Positive periodic solutions of functional differential equations [J]. J Differential Equations, 2004, 202: 354-366.
  • 7GRAEF J R, KONG L J. Existence of multiple periodic solutions for first order functional differential equations [J]. Math Comput Modelling, 2011, 54: 2962-2968.
  • 8GAEF J I, KONG L J. Periodic solutions of first order functional differential equations [J]. Appl Math Lett, 2011, 24: 1981-1985.
  • 9BAI D Y, XU Y T. Periodic solutions of first order functional differential equations with periodic deviations [J]. Comput Math Appl, 2007, 53: 1361-1366.
  • 10KANG S G, SHI B, WANG G Q. Existence of maximal and minimal periodic solutions for first-order functional differential equations [J]. Appl Math Lett, 2010, 23: 22-25.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部