摘要
研究了一阶周期问题u'(t)=a(t)g(u(t)u(t)-b(t)f(u(t))+s,t∈R,u(t)=u(t+T)解的个数与参数s(s∈R)的关系,其中a∈C(R,[0,∞)),b∈C(R,(0,∞))均为T周期函数.∫0Ta(t)dt>0;_f,g∈C(R,[0,∞)).当u>0时,f(u)>0,当u≥0时,0<l≤g(u)<L<∞.运用上下解方法及拓扑度理论,获得结论:存在常数s_1∈R,当s<s_1时,该问题没有周期解;s=s_1时,该问题至少有一个周期解;s>s_1时,该问题至少有两个周期解.
This paper shows the relationship between the parameter s and the number of solutions of the first-order periodic problem u'(t)=a(t)g(u(t))u(t)-b(t)f(u(t))+s,t∈R u(t)=u(t+T),where a ∈ C(R,[0,∞)),b ∈ C(R,(0,∞)) are T-periodic,∫0T a(t)dt 0;f,g ∈ C(R,[0,∞)),and f(u) 0 for u 0,0 l≤ g(u) L ∞ for u≥0.By using the method of upper and lower solutions and topological degree techniques,we prove that there exists s1 ∈R,such that the problem has zero,at least one or at least two periodic solutions when s s1,s=s1,s s1,respectively.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第6期53-58,共6页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(11361054)
甘肃省自然科学基金(1208RJZA258)