期刊文献+

改进的生物地理学算法及其在图像分割中的应用 被引量:3

Improved Biogeography-Based Optimization and Its Application in Image Segmentation
下载PDF
导出
摘要 为了增强生物地理学优化算法(BBO)在图像多阈值分割应用中的全局搜索能力,提高其优化性能,提出一种改进的生物地理学算法(IBBO)。首先,引入多源迁移算子,该算子能更好地从搜索空间中生成新特征值,有效提高种群的多样性;其次,创建一种新型的动态变异算子,该算子能够动态地改变变异幅度,提高算法运算效率,使算法快速收敛到全局最优解;随后,将原来的精英选择算子改为贪婪选择算子,即采用优胜劣汰的策略加快算法收敛速度;最后将其应用到基于最大熵的多阈值分割中。图像分割实验结果表明,IBBO算法运行速度远远快于穷举算法,优化性能优于标准BBO算法和PSO算法。 In order to enhance the global search ability of Biogeography-Based Optimization( BBO) in multi-threshold image segmentation, and improve its optimization performance, an Improved BBO( IBBO)algorithm is proposed. Firstly, a polyphyletic migration operator is introduced, which can better generate new eigenvalue from the searching space and effectively improve the population diversity. Secondly, a new dynamic mutation operator is created, which can dynamically change the mutation range and improve the operation efficiency of algorithm, enabling the algorithm to quickly converge to the global optimum. Then, a greedy selection operator is used instead of the original elitist selection operator, to accelerate the convergence process by using the strategy of survival of the fittest. Finally, IBBO algorithm is applied to the maximum entropy-based multi-threshold segmentation. Experimental results of image segmentation show that the proposed IBBO algorithm operates much faster than the exhaustive algorithm, and the optimization performance is better than that of the standard BBO algorithm and PSO algorithm.
出处 《电光与控制》 北大核心 2015年第12期24-28,58,共6页 Electronics Optics & Control
基金 河南省重点科技攻关项目(132102110209) 河南省基础与前沿技术研究计划项目(142300410295)
关键词 优化算法 生物地理学优化算法 图像分割 多阈值分割 最大熵 optimization algorithm biogeography-based optimization algorithm image segmentation multi-threshold segmentation maximum entropy
  • 相关文献

参考文献11

二级参考文献45

  • 1郑肇葆,黄桂兰.航空影像纹理分类的最小二乘法和问题的分析[J].测绘学报,1996,25(2):121-126. 被引量:13
  • 2郑肇葆.基于蚁群行为仿真的影像分割[J].武汉大学学报(信息科学版),2005,30(11):945-949. 被引量:10
  • 3张云飞,张晔.利用二维熵自动确定图像分割的阈值[J].哈尔滨工程大学学报,2006,27(3):353-356. 被引量:21
  • 4Simon D. Biogeography-Based Optimigation [J].IEEE Trans on Evolutionary Computation, 2008,12 (6) :702-713.
  • 5Hamid R. Tizhoosh Opposition Based Learning:A New Scheme for Machine Intelligence [OL]. http ://pami. uwaterloo.ca/tizhoosh/, 2005.
  • 6Grgeger M, Simon D, Du Dawei. Oppositional Bio geography-Based Optimigation [OL]. http://academic.esuohio.edu/simond/bbo, 2009.
  • 7KAPUR J N, SAHOO P K, WONG A K C. A new meth- od for grey- level picture thresholding using the entropy of the histogram[J].Computer Vision, Graphics and Image Processing, 1985,29 ( 3 ) : 273-285.
  • 8SAHOO P, WILKINS C, YEAGER J. Threshold selection using Renyi's entropy [ J ]. Pattern Recognition, 1997,30( 1 ) : 71-84.
  • 9DE ALBUQUERQUE M P, ESQUEF I A, MELLO A R G. Image thresholding using Tsallis entropy [ J ]. Pattern Recognition Letters, 2004,25 (9) : 1059-1065.
  • 10ABUTALEB A S. Automatic thresholding of gray-level pictures using two-dimensional entropies [ J ]. Pattern Recognition, 1989, 47( 1 ) : 22-32.

共引文献49

同被引文献19

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部