期刊文献+

融合随机退化过程与失效率建模的设备剩余寿命预测方法 被引量:4

Remaining Lifetime Prediction by Integrating Stochastic Degradation Process with Hazard Rate
下载PDF
导出
摘要 剩余寿命预测对于设备的维修与保养具有十分重要的意义。现有的剩余寿命预测方法大多只利用了设备的当前退化信息,对设备的历史寿命信息没有充分利用,而这些信息往往包含着设备寿命的演化信息,对于准确预测设备的剩余寿命具有重要意义。针对这个问题,提出了一种融合随机退化过程与失效率建模的设备剩余寿命预测方法。该方法首先将设备的退化过程建模为Wiener过程,然后利用Cox比例失效模型建模的方法融合设备退化过程对设备失效率的影响,由此达到利用设备历史监测信息的目的。进一步通过Bayes方法,利用当前退化监测信息对退化过程模型的参数进行更新,基于此进行剩余寿命预测,从而实现设备历史数据与当前数据的有效融合。最后,通过激光发生器的退化测量数据验证了提出的方法,说明该方法是有效的,具有一定的应用价值。 Remaining lifetime prediction is of vital importance in equipment maintenance and repairment.Most of the remaining lifetime prediction methods now available only use the current degradation information of equipment, but does not take full advantage of the historical lifetime information, while this information always contains the evolution information of equipment lifetime, which is of great significance for accurate predicting of the remaining lifetime. To solve this problem, a remaining lifetime prediction method is proposed by integrating the stochastic degradation process with hazard rate. Firstly, the equipment degradation process is modeled as a Wiener process, and then Cox proportional hazard model is used for modeling, which integrates the influence of equipment degradation process on the hazard rate, thus attaining the purpose for using the historical monitoring information. Furthermore, parameters of the degradation model are updated with the current degradation monitoring information by Bayesian method, based on which, the remaining lifetime can be predicted, hence realizing effective fusion of equipment historical data and current data. Finally, the proposed method is verified by the degradation measurement data of laser generator. It is demonstrated that the proposed method is valid, with certain application value.
出处 《电光与控制》 北大核心 2015年第12期112-116,共5页 Electronics Optics & Control
基金 国家杰出青年基金(61025014) 国家自然科学基金(61174030 61374126 61473094)
关键词 剩余寿命预测 WIENER过程 失效率 可靠性 激光发生器 remaining lifetime prediction Wiener process hazard rate reliability laser generator
  • 相关文献

参考文献11

  • 1PECHT M. Prognostics and health management of elec- tronics [ M ]. New York : John Wiley & Sons, 2008.
  • 2JARDINE A K S, LIN D, BANJEVIC D. A review on ma- chinery diagnostics and prognostics implementing condi- tion-based maintenance[J]. Mechanical Systems and Sig- nal Processing, 2006, 20 (7) : 1483-1510.
  • 3WANG X. Wiener processes with random effects for deg- radation data[ J ]. Journal of Multivariate Analysis, 2010, 101 (2) :340-351.
  • 4赵建印,刘芳,孙权,周经伦.基于性能退化数据的金属化膜电容器可靠性评估[J].电子学报,2005,33(2):378-381. 被引量:26
  • 5SIX S, WANG W, HU C H, et al. Remaining useful life estimation: a review on the statistical data driven ap- proaches [ J ]. European Journal of Operational Research, 2011, 213( 1 ) :1-14.
  • 6彭宝华,周经伦,孙权,冯静,金光.基于退化与寿命数据融合的产品剩余寿命预测[J].系统工程与电子技术,2011,33(5):1073-1078. 被引量:37
  • 7COX D R. Regression models and life-tables [ J ]. Journal of the Royal Statistical Society, Series B, 1972, 34: 187- 220.
  • 8ZHOU Q, SON J B, ZHOU S Y. Remaining useful life pre- diction of individual units subject to hard failure [J]. I1E Transactions, 2014, 46(10) : 1017-1030.
  • 9司小胜,胡昌华,周东华.带测量误差的非线性退化过程建模与剩余寿命估计[J].自动化学报,2013,39(5):530-541. 被引量:71
  • 10MEEKER W Q, ESCOBAR L A. Statistical methods for reliability data[ M]. New York:John Wiley & Sons, 1998.

二级参考文献29

  • 1郭大德.金属化膜电容器的损耗分析及损坏机理[J].电力电容器,1995(2):12-15. 被引量:27
  • 2曾声奎,Michael G.Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632. 被引量:279
  • 3赵建印,刘芳,孙权,周经伦.金属化膜脉冲电容器在线可靠性评估与性能预计[J].兵工学报,2006,27(2):265-268. 被引量:6
  • 4Wang X, Nair V. A class of degradation model based on nonhomogeneous Gaussian process[R]. Michigam University of Michigan,2003.
  • 5Chikkara R S, Folks J K. The inverse Gaussian distribution[M]. New York: Marcell Dekker,1989.
  • 6Bernardo J M. Algorithm AS 103 :Psi (digamma) function[J]. Applied Statistics, 1976,25(3) : 315 - 317.
  • 7Karlis D, Xekalaki E. Choosing initial values for the EM algorithm for finite mixtures[J].Computational Statistics & Data Analysis ,2003,41(3/4) :577 - 590.
  • 8Chirmam R B. On-line reliability estimation of individual components, using degradation signals[J]. IEEE Trans. on Reliability, 1999,48(4) :403 - 412.
  • 9Lu S, Lu H, Kolarik W J. Multivariate performance reliability prediction in real-time[J]. Reliability Engineering and System Safety, 2001,72 (1) 39 - 45.
  • 10Yuan X X. Stochastic modeling of deterioration in nuclear power plant components[D]. Waterloo: University of Waterloo,2007.

共引文献249

同被引文献55

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部