期刊文献+

基于氯离子传导的新型二次电池 被引量:2

Novel Secondary Battery Based on Chloride Ion Transfer
下载PDF
导出
摘要 二次电池的研究热点主要集中在基于阳离子传输的电化学体系上,如Li^+、Na^+、Mg^(2+)等电池。氯离子电池是作者提出的一种基于阴离子传导的新型二次电池。正极材料为过渡族或部分主族的金属氯化物或金属氯氧化物,负极为碱金属、碱土金属或稀土金属,电解液为可传输氯离子的复合离子液体。其电极体系的理论能量密度高于当前锂离子电池体系,可达2 500 Wh/l;而且该体系可不用Li,以具有丰富储量的元素(如Mg,Ca,稀土等)作为负极材料。大多数过渡族的金属氯化物为路易斯酸,能够不同程度地和含有氯离子的路易斯碱发生反应,生成可溶于电解液中的络合离子。抑制金属氯化物的脱溶和开发新型高稳定性电极材料是实现氯离子电池应用的关键点之一。介绍了氯离子电池的概念、基本原理,阐述了金属氯(氧)化物/金属和多电子金属氯氧化物/镁电极体系。 Hot topics in the field of secondary batteries are focused on the electrochemical systems based on cation transfer, such as LIB, NIB and MB. Chloride ion battery (CIB) proposed by the author is a kind of novel battery based on chloride ion transfer. The corresponding cathode materials are metal chlorides with the metals listed in transition group or part of main group ; the anode materials are alkali metals, alkaline-earth metals or rare-earth metals ; the electrolyte is the ionic liquid composite allowing chloride ion transfer. CIB shows theoretical energy densities which are above those of the current lithium ion battery and up to 2 500 Wh/l. The use of Li as anode is unnecessary and various abundant materials such as Mg, Ca or rare-earth metals could be used as anode. Most transition-metal chlorides are Lewis acids, which can react with a Lewis base that contains chloride ions, resulting in the formation of soluble complex ions. A key challenge to achieve application of CIB is to suppress this dissolution and develop new electrode materials with high stability. Herein, we report the concept and the principles of CIB. Metal chloride/metal, metal oxychloride/metal and multi-electron metal oxychloride/magnesium electrode systems are elaborated.
出处 《中国材料进展》 CAS CSCD 北大核心 2015年第11期847-851,共5页 Materials China
基金 国家自然科学基金资助项目(U1407106) 江苏高校优势学科建设工程资助项目
关键词 二次电池 氯离子电池 金属氯化物 金属氯氧化物 电化学性能 secondary battery chloride ion battery metal chloride metal oxychloride electrochemical performance
  • 相关文献

参考文献31

  • 1l.ee .I, Urban A, I.i X, et al. L]nloeking the Potential of Cation- Disordered Oxides fir ReehargeaMe l,ithium Batteries [J ]..%# ence, 2014, 343: 519-522.
  • 2Zheng G, Lee S W, Liang Z, et al. Interconnected Hollow Carbon Nanospheres |or Stable Lithium Metal Anodes [ J j. Nmre N.no- technology, 2014, 9:618-623.
  • 3Liang X, Hart C, Pang Q, et al. A Highly Efficient Polysulfide Mediator fir Lithium-Sulfur Batteries [ J ]. Nature Communicl- tion, 2015, 6:5 682.
  • 4Yabuuchi iN, Kubota K, Dahbi M, et ll. Research Development on S(Mium-lon Batteries [ J ]. Chemical Reviews, 2014, 114: 11 636 - 11 682.
  • 5Wen Y, He K, Zhu Y, et al. Expanded Graphite as Superior Anode hr Sodium-lon Batteries [ J ]. Nature Communicatior*, 2014, 5:4 033.
  • 6Zhao Karger Z, Zhao X Y, Wang D, et al. Performance Improve- ment of Magnesium Sulfur Batteries with Modified Non-Nucleophil- ic Electrolytes [ J ]. Advanced Encrgy Materials, 2015, ( 3 ) 5. DOI: 10. 1002/aenm. 201401155.
  • 7Carter T J, Mohtadi R, Arthur T S, et al. Boron Clusters as Highly Stable Magnesium-Battery Electrolytes [ J ]. Angewandt Chemie International Edition, 2014, 53:3 173 -3 177.
  • 8Matsui M. Study on Electrochemically Deposited Mg Metal [ J ]. Journal of Power Sources, 2011, 196:7 048 -7 055.
  • 9Jackle M, Gro6 A. Microscopic Properties of Lithium, Sodium, and Magnesium Battery Anode Materials Related to Possible Den- drite Growth [ J ]. Journal of Chemical Physics, 2014, 141 : 174 710.
  • 10Zhao X Y, Ren S, Bruns M, et al. Chloride Ion Battery : A New Member in the Rechargeable Family [ J ]. Journal of Power Sources, 2014, 245: 706-711.

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部