期刊文献+

一种带有加速策略和变异策略的粒子群算法 被引量:1

A Kind of Particle Swarm Optimization Algorithm with Acceleration Strategy and Mutation Strategy
下载PDF
导出
摘要 不同于对粒子群控制参数的改进,在标准粒子群的基础上提出了双种群粒子群算法,粒子种群每次进化时都按适应值排序并分组,最好的一组粒子采用适应值最接近的两点连线上的更好点替代当前粒子位置的加速策略,以此加大算法的局部搜索能力,为了平衡算法的全局和局部搜索能力,另一组最差的粒子采用随机背驰当前全局最优粒子的速度方向进行变异策略更新,以此保证种群的全局搜索能力,该算法采用一般非线性惯性权重和固定学习因子.新算法在23个三类经典测试函数的实验中都找到了最优值,与其它算法比较,结果表明该新算法在三类问题上都有更好的性能,特别是在多模函数的优化中更为显著. The double population particle swarm optimization is proposed based on the standard PSO,which is different from the improvement of control parameters of PSO.The particle population is sorted and grouped according to adaptive value at every time evolution.In order to increase the ability of local search algorithm,new particles displace the current position of original particles,and the new particles adopt a better point which is in a line of connecting the nearest two points.In order to balance the algorithm of the global search ability with the local search ability,the worst group of particle is update,and the worst particles use random velocity direction which contrary to the global optimal particle.This algorithm uses general nonlinear inertia weight and constant learning factor.In the experiments of 3kinds of problems which contain 23 kinds of classical test function,the new algorithm can find the optimal value of all functions.Compared with other algorithms,the result shows that the new one has better function,especially in the optimization of multimodal function.
出处 《兰州文理学院学报(自然科学版)》 2015年第6期41-47,共7页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金 国家自然科学基金资助项目(61561001)
关键词 粒子群算法 替换粒子 加速策略 变异策略 particle swarm optimization replacement particle acceleration strategy mutation strategy
  • 相关文献

参考文献8

  • 1EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the sixth international symposium on micro machine and human science, USA: IEEE Press, 1995:39-43.
  • 2QI H, NIU C Y, GONG S. et al. Application of the hybrid particle swarm optimization algorithms for simultaneous estimation of multi-parameters in a transient conduction-radiation problem[J1. Interna- tional Journal of Heat and Mass Transfer, 2015 (83) : 428-440.
  • 3董平平,高东慧,田雨波,胡永建.一种改进的自适应惯性权重粒子群优化算法[J].计算机仿真,2012,29(12):283-286. 被引量:20
  • 4段玉红,高岳林.基于差分演化的粒子群算法[J].计算机仿真,2009,26(6):212-215. 被引量:18
  • 5LI C, YANG S, NGUYEN T T. A self-learning par- ticle swarm optimizer for global optimization prob- lems[J]. IEEE Transactions on, Systems, Man, and Cybernetics, 2012,42(3) :627-646.
  • 6史峰,王辉,郁雷.Matlab智能算法30个案例分析[M].北京:北京航空航天大学出版社,2007.
  • 7SHI Y, EBERHART R. A modified particle swarm optimizer //Evolutionary Computation Proceed- ings on Computational Intelligence, USA: IEEE, 1998:69-73.
  • 8赵志刚,黄树运,王伟倩.基于随机惯性权重的简化粒子群优化算法[J].计算机应用研究,2014,31(2):361-363. 被引量:71

二级参考文献20

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2夏桂梅,曾建潮.微粒群算法的研究现状及发展趋势[J].山西师范大学学报(自然科学版),2005,19(1):23-25. 被引量:19
  • 3张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 4胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 5谢晓峰,张文俊,杨之廉.粒子群算法综述[M].控制与决策,2003,18(2):129-134.
  • 6J Robinson, S Sinton, Y Rahmat - Samii. Particle swarm, genetic algorithm, and their hydirds: optimization of a profiled corrygated horn antenna[ C]. IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, San Antonio, TX 2002.
  • 7Y Shi, R Eberhart. Empirical study of particle swarm optimization [ C ]. International Conference on Evolutionary Computation, Washington, USA:IEEE, 1999. 1945 - 1950.
  • 8R C Eberhart, Y H Shi. Particle swarm optimization: developments , applications and resources [ C ]. proceedings of the IEEE Congress on Evolutionary Computation, Piscataway, USA : IEEE Service Center, 2001.81 - 86.
  • 9Y Shi,R C Eberhart. A modified particle swarm optimizer[A].1998.69-73.
  • 10R C Eberhart,Y Shi. Comparing inertia weights and constriction factors[A].2000.48-88.

共引文献108

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部