期刊文献+

Kaczmarz算法收敛解的性态分析 被引量:1

The Property Analysis of the Convergent Solution to Kaczmarz Method
下载PDF
导出
摘要 Kaczmarz算法作为一种重要的代数重建技术(ART)在医学成像及诊断研究中起着很重要的作用。随着计算机硬件技术的发展,诸如ART、SIRT等迭代算法由于其良好的抗干扰性能及数据缺失情况[1]下良好的成像能力逐渐受到人们的重视。本文主要基于矩阵广义逆的定义和性质证明,当x(0)∈R(AT)时Kaczmarz算法迭代序列的极限为Moore-Penrose广义解的性质。理论表明Kaczmarz方法求解相容性和不相容性问题都是适定方法,本文从数值实验的角度验证了Kaczmarz方法的"适定"性和求解扰动问题时的"半收敛"性。另外,Kaczmarz方法当x(0)∈R(AT)时还是一类正则化方法。 Kaczmarz method is an important algebraic reconstruction techniques (ART) and play an important role in medical imaging and diagnosis. With the development of computer hardware, these iterative algorithms, such as ART, SIRT, attract people's attention due to their excellent performance in image reconstruction problems with anti-interference and absent data. In this paper, on the basis of the definition and the properties of the generalized inverse, we prove that the limit of the iterative sequence from Kaczmarz method is Moore-Penrose generalized solution as x(0)∈R(AT)⊥. The theoretical results show that Kaczmarz method is 'well-posed' method for consistent and inconsistent problems. In this paper, we verify the 'well-posed' of Kaczmarz method and its 'semi-convergence' for perturbed problems by numerical test. In additional, Kaczmarz method is also a regularization method as x(0)∈R(AT)⊥.
作者 康传刚 周恒
出处 《CT理论与应用研究(中英文)》 2015年第5期701-709,共9页 Computerized Tomography Theory and Applications
关键词 CT成像 代数重建技术 Kaczmarz方法 正则化方法 CT imaging algebraic reconstruction techniques Kaczmarz method regularization method
  • 相关文献

参考文献18

  • 1王浩.cT不完全投影数据重建算法研究[D].大连:大连理工大学,2009.
  • 2Kaczmarz S. Angenaherte auflosung von systemen linearer gleichungen[J]. Bulletin de Academie Polonaise des Sciences et Lettres, 1937, 35: 355-357.
  • 3Cimmino G. Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari[J]. La Ricerca Scientifica (Roma), 1938: 326-333.
  • 4Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29: 471-481.
  • 5Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. Medical Imaging, IEEE Transactions on, 1994, 13(4): 601-609.
  • 6刘畅,邱钧,肖波.一种基于对称结构优化的OSEM快速重建算法[J].CT理论与应用研究(中英文),2009,18(4):1-8. 被引量:4
  • 7牛素望,陈平,潘晋孝.一种基于EM—TV的CT重建算法[C]//第十三届体视学与图像分析学术会议论文集,2013,417-421.
  • 8Herman GT , Lent reconstruction[J]. A. A computer Information and implementation of Bayesian analysis of image Control, 1976, 31:464-484.
  • 9HermanGT, HurwitzH, Lent A, et al. On the Bayesian approach to imagereconstruction[J] Information and Control, 1979, 42: 60-71.
  • 10Hanson KM. Bayesian analysis of Bayesian inferenece and maximum inconsistent measurements entropy methods in science of neutron cross section. and engineering[C]//Knuth K, et al, eds, American Institute of Physics, Conference Proceedings, 2005, 803:431 -439.

二级参考文献8

  • 1邱钧,王亮.由投影重建图像的对称网格迭代算法[J].CT理论与应用研究(中英文),2007,16(2):20-30. 被引量:7
  • 2陈永林.矩阵的扰动与广义逆[J].应用数学学报,1986,9:319-327.
  • 3JUN J.Algebraic perturbation methods for generalized inverse[J].Journal of Computational Mathematics,1989,7(4):327-333.
  • 4BEN-ISRAEL A,GREVILLE T N E.Generalized Inverses:Theory and Applications[M].2nd ed.New York:Springer-Verlag,2003.
  • 5BOTT R,DUFFIN R J.On the algebra of networks[J].Trans Amer Math Soc,1953,74:99-109.
  • 6CHEN G,LIU G,XUE Y.Perturbation analysis of the generalized Bott-Duffin inverse of L-zero matrices[J].Linear Multilinear Algebra,2003,51(1):11-20.
  • 7CHEN Y.The generalized Bott-Duffin inverse and its applications[J].Linear Algebra and Its Applications,1990,134:71-90.
  • 8邱钧,徐茂林.由投影重建图像的对称块迭代算法[J].电子与信息学报,2007,29(10):2296-2300. 被引量:11

共引文献9

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部