期刊文献+

一种新型轮廓波变换及基追踪降噪

An Improved Contourlet Transform and Basis Pursuit Image Denosing
下载PDF
导出
摘要 由于轮廓波变换(Contourlet Transform)基图像存在不具备局部频率特性的缺陷,通过分析频域楔形支撑区域外部出现潜在混叠的原因,结合易操纵金字塔结构的优良特性,提出了一种新型轮廓波变换来克服传统轮廓波变换的缺陷.这种新型轮廓波变换采用易操纵金字塔替换原变换的拉普拉斯金字塔,保证了其平移不变性.通过非线性逼近实验和基图像分析,得出新型轮廓波变换能稀疏表示图像和避免频域混叠,建立的基追踪图像降噪模型结果表明新型轮廓波变换可以同时提高降噪图像的峰值信噪比和图像质量. In view of contourlet transform basis images are not localized in the frequency domain~ After analyz- ing the cause of frequency domain aliasing and many fine properties of the steerable pyramid, we propose improved contourlet transform to overcome the shortage of original contourlet transform. The proposed transform employs the steerable pyramid instead of the laplacian pyramid to complete multiscale decomposition, which makes the trans- form has shift invariance. By doing nonlinear approximation experiment and analyzing basis images, We conclude that this transform can sparsely express images and avoid frequency domain aliasing. Building basis pursuit image denosing model results show that the proposed transform outperforms the original contourlet transform both in terms of peak signal noise rate (PSNR) and visual quality.
出处 《伊犁师范学院学报(自然科学版)》 2015年第4期68-72,共5页 Journal of Yili Normal University:Natural Science Edition
基金 伊犁师范学院重点项目(2011YNZD011)
关键词 轮廓波变换 易操纵金字塔 图像降噪 contourlet transform steerable pyramid image denosing
  • 相关文献

参考文献12

  • 1DO M N, VETTERLI M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Trans. Image Proc, 2005, 14 : 2091- 2106.
  • 2郭旭静,侯正信.全相位Contourlet在图像去噪上的应用[J].天津大学学报,2006,39(7):832-836. 被引量:11
  • 3BAMBERGER R H, SMITH M J T. A filter bank for the directional decomposition of images : theory and design[J]. IEEE Trans. SignalProc., 1992, 40: 882-893.
  • 4CANDES E J, DEMANET L, DONOHO D L, et al. Fast diserete eurvelet transforms [C]. California Institute of Technology, Teeh. Rep, Applied, Computational Mathematics, 2005.
  • 5CHEN T, VAIDYANATHAN P P. Considerations in multidimensional filter bank design[M]. Chicago, USA: in Proc. IEEE Int. Symp. Circ. And Syst, 1993 : 643-646.
  • 6SIMONCELLI E P, FREMAN W T, ADELSON E H,et al. Shiftable multiseal etransforms[J]. IEEE Trans. Inform. Th., Special Issue on Wavelet Transforms and Multiresolution Signal Analysis, 1992, 38: 587-607.
  • 7SIMONCELLI E P, FREMAN W T. The Steerable Pyramid: A Flexible Architecture for Muhi-Seale Derivative Computation [ C ]. IEEE Second Int'l Conf on Image Processing., Washington DC, 1995: 444-447.
  • 8CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SLAM Journal on Seientilc Comput- ing, 1998, 20: 33-61.
  • 9CHANG S G, YU B, VETTERLI M. Spatially Adaptive Wavelet Thresholding with Context Modeling for Image Denosing [J]. IEEE Transactions on Image Processing, 2000, 9 : 1522-1531.
  • 10PORTILLA J, STRELA V, WAINWRIGHT M J, et al. Image denoising using scale mixtures of Gaussians in the wavelet do- main[J]. IEEE Trans. Image Process, 2003, 12: 1338-1351.

二级参考文献19

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2Minh N do, Martin V. The contourlet transform: An efficient directional muhiresolution image representation [ J ].IEEE Transactions Image on Processing, 2005, 14 ( 12 ):2091-2106.
  • 3Pennec E L, Mallat S. Image compression with geometric wavelets[ C ]//Proc IEEE Int Conf on Image Proc. Vancouver, Canada, 2000:661-664.
  • 4Cohen A, Matei B. Compact representation of images by edge adapted multiscale transforms [ C ] // Proc IEEE Int Conf on Image Proc, Special Session on Image Processing and Non-Linear Approximation. Thessaloniki, Greece,2001.
  • 5Donoho D L. Wedgelets: Nearly-minimax estimation of edges[J]. Ann Statist, 1999,27:859-897.
  • 6Wakin M B, Romberg J K, Choi H, et al. Rate-distortion optimized image compression using wedgelets [C]//Proc IEEE Int Conf on Image Proc. Thessaloniki, Greece,2002.
  • 7Dragotti P L, Martin V. Footprints and edgeprints for image denoising and compression[C]//Proc IEEE Int Conf on Image Proc. New York,USA,2001.
  • 8Shukla R, Dragotti P L, Minh N do, et al. Rate-distortion optimized tree structured compression algorithms for piecewise smooth images [ J ]. IEEE Trans Image Proc, 2002,2(10) :237-240.
  • 9Hou Zhengxin, Guo Xujing, Yang Xi. A novel hierarchical coding algorithm based on multi-subsample and the all phase IDCT interpolation [ C ]//Proceedings of SPIE. Denver, Colorado, USA,2004,5561:76-83.
  • 10Bamberger R H, Smith M J T. A filter bank for the directional decomposition of images: Theory and design [ J ]. IEEE Trans Signal Proc, 1992, 40(4):882-893.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部