期刊文献+

Near-Surface Anisotropic Structure Characterization by Love Wave Inversion for Assessing Ground Conditions in Urban Areas 被引量:1

Near-Surface Anisotropic Structure Characterization by Love Wave Inversion for Assessing Ground Conditions in Urban Areas
原文传递
导出
摘要 In many geophysical applications, neglecting of anisotropy is somehow an oversimplification. The mismatch between prediction based on isotropic theory and near-surface seismic observations indicates the need for the inclusion of medium anisotropy. In this paper, surface wave(Love wave) dispersion properties are used to estimate the anisotropic structure of the near-surface layered earth, which is modeled as media possess vertical transverse isotropy(VTI), a reasonable assumption for near-surface sedimentary layers. Our approach utilizes multi-mode surface waves to estimate both the velocity structure and the anisotropy structure. This approach consists of three parts. First, the dispersion analysis is used to extract dispersion curves from real data. Second, the forward modeling is carried out based on the dispersion equation of Love wave in a multi-layered VTI medium. Dispersion curves of multi-modes, which are the numerical solutions of the dispersion equation, are obtained by a graphic-based method. Finally, the very fast simulated annealing(VFSA) algorithm is used to invert velocity structure and anisotropy structure simultaneously. Our approach is verified by the synthetic dispersion curve generated by a VTI medium model. The estimation of shear wave velocity and anisotropy structure of surface wave data acquired at Rentschler Field, an urban center site on sediments in the Connecticut River valley reveals a simple structure of the sediment layer over a bedrock half space. The results are verified by other inversion results based on different data set obtained on the same site. The consistency of inversion results shows the feasibility and efficiency of the approach. In many geophysical applications, neglecting of anisotropy is somehow an oversimplification. The mismatch between prediction based on isotropic theory and near-surface seismic observations indicates the need for the inclusion of medium anisotropy. In this paper, surface wave(Love wave) dispersion properties are used to estimate the anisotropic structure of the near-surface layered earth, which is modeled as media possess vertical transverse isotropy(VTI), a reasonable assumption for near-surface sedimentary layers. Our approach utilizes multi-mode surface waves to estimate both the velocity structure and the anisotropy structure. This approach consists of three parts. First, the dispersion analysis is used to extract dispersion curves from real data. Second, the forward modeling is carried out based on the dispersion equation of Love wave in a multi-layered VTI medium. Dispersion curves of multi-modes, which are the numerical solutions of the dispersion equation, are obtained by a graphic-based method. Finally, the very fast simulated annealing(VFSA) algorithm is used to invert velocity structure and anisotropy structure simultaneously. Our approach is verified by the synthetic dispersion curve generated by a VTI medium model. The estimation of shear wave velocity and anisotropy structure of surface wave data acquired at Rentschler Field, an urban center site on sediments in the Connecticut River valley reveals a simple structure of the sediment layer over a bedrock half space. The results are verified by other inversion results based on different data set obtained on the same site. The consistency of inversion results shows the feasibility and efficiency of the approach.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2015年第6期807-812,共6页 地球科学学刊(英文版)
基金 supported by the U.S. Geological Survey through a research collaboration program with University of Connecticut via its branch of geophysics, office of groundwater
关键词 Love wave dispersion multi-modes ANISOTROPY very fast simulated annealing. Love wave, dispersion, multi-modes, anisotropy, very fast simulated annealing.
  • 相关文献

参考文献1

二级参考文献2

共引文献6

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部