摘要
对于一个连通图而言,它的最小Q-特征值为零当且仅当它是二部图.图的最小Q-特征值常被用来衡量一个图的非二部程度,因而受到研究者的广泛关注.文中研究了图中存在长路的最小Q-特征值条件,分别确定了最小Q-特征值最小的不含路Pt的非二部单圈图和非二部连通图.
For a connected graph G, the least eigenvalue qn(G) of the signless Laplacian of G equals zero if and only if G is bipartite. qn(G) is often used to measure the non-bipartiteness of a graph G, and has attracted the interest of more and more researchers. This paper investigates conditions depending on qn(G) under which a graph G contains a long path, and characterizes the extremal graph in which the least signless Laplacian eigenvalue attains the minimum among all the Pt-free non-bipartite unicyclic graphs and Pt-free non-bipartite connected graphs of order n, respectively.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2015年第4期462-468,共7页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(11171290)
江苏省自然科学基金(BK20151295)
关键词
非二部单圈图
非二部连通图
最小Q-特征值
non-bipartite unicyclic graph
non-bipartite connected graph
signless Laplacian
least eigenvalue